
SWEN 6301 Software Construction
Module 4: System Modeling and Architectural Design

Ahmed Tamrawi

Copyright notice: 1- care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.
2- many slides are adopted with permission from Ian Sommerville and Mustafa Misir ‘s lecture notes on Software Engineering course and Modern Software Development Technology course.

What does the program print?
public class JavaPuzzle {

private JavaPuzzle internalInstance = new JavaPuzzle();

public JavaPuzzle() throws Exception {
throw new Exception("I'm not coming out!");

}

public static void main(String[] args) {
try {

JavaPuzzle p = new JavaPuzzle();
System.out.println("Surprise!");

} catch (Exception e) {
System.out.println("I told you so!");

}
}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

System Modeling

Topics Covered

• Context models
• Interaction models
• Structural models
• Behavioral models

System Modeling

• System modeling is the process of developing abstract models of a
system, with each model presenting a different view or perspective of
that system.
• System modeling has now come to mean representing a system using

some kind of graphical notation, which is now almost always based on
notations in the Unified Modeling Language (UML).
• You will use UML in Assignment 2, so try to learn the basics via

various online resources (https://www.tutorialspoint.com/uml/)
• System modelling helps the analyst to understand the functionality

of the system and models are used to communicate with customers.

https://www.tutorialspoint.com/uml/

Existing and Planned System Models

• Models of the existing system are used during requirements
engineering. They help clarify what the existing system does and can
be used as a basis for discussing its strengths and weaknesses. These
then lead to requirements for the new system.
• Models of the new system are used during requirements engineering

to help explain the proposed requirements to other system
stakeholders. Engineers use these models to discuss design proposals
and to document the system for implementation.

System Perspectives

• An external “context” perspective, where you model the context or
environment of the system.
• An interaction perspective, where you model the interactions

between a system and its environment, or between the components
of a system.
• A structural perspective, where you model the organization of a

system or the structure of the data that is processed by the system.
• A behavioral perspective, where you model the dynamic behavior of

the system and how it responds to events.

UML Diagram Types

• Activity diagrams, which show the activities involved in a process or
in data processing .
• Use case diagrams, which show the interactions between a system

and its environment.
• Sequence diagrams, which show interactions between actors and the

system and between system components.
• Class diagrams, which show the object classes in the system and the

associations between these classes.
• State diagrams, which show how the system reacts to internal and

external events.

Use of Graphical Models

• As a means of facilitating discussion about an existing or proposed
system
• Incomplete and incorrect models are OK as their role is to support discussion.

• As a way of documenting an existing system
• Models should be an accurate representation of the system but need not be

complete.

• As a detailed system description that can be used to generate a
system implementation
• Models have to be both correct and complete.

Context Models

Context Models

• Context models are used to illustrate the operational context of a
system - they show what lies outside the system boundaries.
• Social and organisational concerns may affect the decision on where

to position system boundaries.
• Architectural models show the system and its relationship with other

systems.

System Boundaries

• System boundaries are established to define what is inside and what
is outside the system.
• They show other systems that are used or depend on the system being

developed.

• The position of the system boundary has a profound effect on the
system requirements.
• Defining a system boundary is a political judgment
• There may be pressures to develop system boundaries that increase /

decrease the influence or workload of different parts of an organization.

Context of the Mentcare System

«system»
Mentcare

«system»
Patient record

system

«system»
Appointments

system

«system»
Admissions

system

«system»
Management

reporting
system

«system»
Prescription

system

«system»
HC statistics

system

Process Perspective

• Context models simply show the other systems in the environment,
not how the system being developed is used in that environment.
• Process models reveal how the system being developed is used in

broader business processes.
• UML activity diagrams may be used to define business process

models.

Process Model of Involuntary Detention

Confirm
detention
decision Find secure

place

Admit to
hospital

Transfer to
police station

Transfer to
secure hospital

Inform next
of kin

Inform
social care

Inform
patient of

rights

Update
register

«system»
Admissions

system

«system»
Mentcare

«system»
Mentcare

Record
detention
decision

[dangerous]

[not available]

[not
dangerous]

[available]

Interaction Models

Interaction Models

• Modeling user interaction is important as it helps to identify user
requirements.
• Modeling system-to-system interaction highlights the communication

problems that may arise.
• Modeling component interaction helps us understand if a proposed

system structure is likely to deliver the required system performance
and dependability.
• Use case diagrams and sequence diagrams may be used for

interaction modelling.

Use Case Modeling

• Use cases were developed originally to support requirements
elicitation and now incorporated into the UML.
• Each use case represents a discrete task that involves external

interaction with a system.
• Actors in a use case may be people or other systems.
• Represented diagrammatically to provide an overview of the use case

and in a more detailed textual form.

Transfer-Data Use Case: Mentcare System

Medical receptionist Patient record system

Transfer data

MHC-PMS: Transfer data

Actors Medical receptionist, patient records system (PRS)

Description A receptionist may transfer data from the Mentcase system to a
general patient record database that is maintained by a health
authority. The information transferred may either be updated
personal information (address, phone number, etc.) or a
summary of the patient’s diagnosis and treatment.

Data Patient’s personal information, treatment summary

Stimulus User command issued by medical receptionist

Response Confirmation that PRS has been updated

Comments The receptionist must have appropriate security permissions to
access the patient information and the PRS.

Medical
receptionist

Register
patient

Transfer data

Contact
patient

View patient
info.

Unregister
patient

Sequence Diagrams

• Sequence diagrams are part of the UML and are used to model the
interactions between the actors and the objects within a system.
• A sequence diagram shows the sequence of interactions that take

place during a particular use case or use case instance.
• The objects and actors involved are listed along the top of the

diagram, with a dotted line drawn vertically from these.
• Interactions between objects are indicated by annotated arrows.

Sequence Diagram for View Patient
Information

P: PatientInfo

ViewInfo (PID)
report (Info, PID,
UID)

authorize (Info,
UID)

Patient info

D: Mentcare-DB AS: Authorization

authorization

Error (no access)

[authorization OK]

[authorization fail]

Medical Receptionist

alt

P: PatientInfo

login ()

D: Mentcare-DB AS: Authorization

authorization

[sendInfo]

[sendSummary]

Medical Receptionist PRS

ok

updateInfo() updatePRS (UID)

update (PID)

update OKMessage (OK)

summarize (UID)

authorize (TF, UID)

authorization

authorize (TF, UID)

:summary

update (PID)

UpdateSummary()

logout ()

alt

update OK
Message (OK)

Sequence Diagram for Transfer Data

Structural Models

Structural Models

• Structural models of software display the organization of a system in
terms of the components that make up that system and their
relationships.
• Structural models may be static models, which show the structure of

the system design, or dynamic models, which show the organization
of the system when it is executing.
• You create structural models of a system when you are discussing and

designing the system architecture.

Class Diagrams

• Class diagrams are used when developing an object-oriented system
model to show the classes in a system and the associations between
these classes.
• An object class can be thought of as a general definition of one kind

of system object.
• An association is a link between classes that indicates that there is

some relationship between these classes.
• When you are developing models during the early stages of the

software engineering process, objects represent something in the real
world, such as a patient, a prescription, doctor, etc.

UML Classes and Association

Patient Patient
record

1 1

Classes and Associations in the MHC-PMS

Patient General
practitioner

Consultation

Consultant

Medication

Treatment

Hospital
Doctor

Condition
referred-by

referred-to

diagnosed-
with

attends

prescribes

prescribesruns

1..*

1

1..* 11..*

1..*

1..*

1..*

1..4

1..*

1..*
1..*

1..*

The Consultation Class

Consultation

Doctors
Date
Time
Clinic
Reason
Medication prescribed
Treatment prescribed
Voice notes
Transcript
...

New ()
Prescribe ()
RecordNotes ()
Transcribe ()
...

Generalization

• Generalization is an everyday technique that we use to manage
complexity.
• Rather than learn the detailed characteristics of every entity that we

experience, we place these entities in more general classes (animals,
cars, houses, etc.) and learn the characteristics of these classes.
• This allows us to infer that different members of these classes have

some common characteristics e.g. squirrels and rats are rodents.

Generalization

• In modeling systems, it is often useful to examine the classes in a system to see if there is
scope for generalization. If changes are proposed, then you do not have to look at all classes
in the system to see if they are affected by the change.

• In object-oriented languages, such as Java, generalization is implemented using the class
inheritance mechanisms built into the language.

• In a generalization, the attributes and operations associated with higher-level classes are also
associated with the lower-level classes.

• The lower-level classes are subclasses inherit the attributes and operations from their super
classes. These lower-level classes then add more specific attributes and operations.

Generalization Hierarchy

Doctor

General
practitioner

Hospital
doctor

Consultant Team doctor

Trainee
doctor

Qualified
doctor

Generalization Hierarchy with Added Detail

Doctor

General practitionerHospital doctor

Name
Phone #
Email

register ()
de-register ()

Staff #
Pager #

Practice
Address

Object Class Aggregation Models

• An aggregation model shows how classes that are collections are
composed of other classes.
• Aggregation models are similar to the part-of relationship in semantic

data models.

Aggregation Association

Patient record

Patient Consultation

11

1 1..*

Behavioral Models

Behavioral Models

• Behavioral models are models of the dynamic behavior of a system as
it is executing.
• They show what happens or what is supposed to happen when a

system responds to a stimulus from its environment.
• You can think of these stimuli as being of two types:
• Data Some data arrives that has to be processed by the system.
• Events Some event happens that triggers system processing. Events may have

associated data, although this is not always the case.

Data-Driven Modeling

• Many business systems are data-processing systems that are primarily
driven by data. They are controlled by the data input to the system,
with relatively little external event processing.
• Data-driven models show the sequence of actions involved in

processing input data and generating an associated output.
• They are particularly useful during the analysis of requirements as

they can be used to show end-to-end processing in a system.

Activity Model of the Insulin Pump’s
Operation

Calculate
pump

commands

Blood sugar
sensor

Insulin
pump

Blood sugar
level

Pump control
commands

Insulin
requirement

Get sensor
value

Sensor
data

Compute
sugar level

Calculate
insulin
delivery

Control
pump

Order Processing

:Order

Fillin ()

Purchase officer

Validate ()

[validation ok]

«datastore»
Orders

Budget

Update (amount)

Save ()

Supplier

Send ()

Event-Driven Modeling

• Real-time systems are often event-driven, with minimal data
processing. For example, a landline phone switching system responds
to events such as ‘receiver off hook’ by generating a dial tone.
• Event-driven modeling shows how a system responds to external and

internal events.
• It is based on the assumption that a system has a finite number of

states and that events (stimuli) may cause a transition from one state
to another.

State Machine Models

• These model the behaviour of the system in response to external and internal
events.
• They show the system’s responses to stimuli so are often used for modelling real-

time systems.
• State machine models show system states as nodes and events as arcs between

these nodes. When an event occurs, the system moves from one state to another.
• Statecharts are an integral part of the UML and are used to represent state

machine models.

State Diagram of a Microwave Oven
Full power

Enabled

do: operate
oven

Full
power

Half
power

Half
power

Full
power

Number

Door
open

Door
closed

Door
closed

Door
open

Start

do: set power
= 600

Half power
do: set power

= 300

Set time

do: get number
exit: set time

Disabled

Operation

Cancel

Waiting

do: display
time

Waiting

do: display
time

do: display
 'Ready'

do: display
'Waiting'

Timer

Timer

Microwave Oven Operation

Cook
do: run

generator

Done

do: buzzer on
for 5 secs.

Waiting

Alarm
do: display

event

do: check
status

Checking

Turntable
fault

Emitter
fault

Disabled

OK

Timeout

Time

Door open Cancel

Operation

States and Stimuli for the Microwave Oven

State Description
Waiting The oven is waiting for input. The display shows the current time.

Half power The oven power is set to 300 watts. The display shows ‘Half power’.

Full power The oven power is set to 600 watts. The display shows ‘Full power’.

Set time The cooking time is set to the user’s input value. The display shows
the cooking time selected and is updated as the time is set.

Disabled Oven operation is disabled for safety. Interior oven light is on.
Display shows ‘Not ready’.

Enabled Oven operation is enabled. Interior oven light is off. Display shows
‘Ready to cook’.

Operation Oven in operation. Interior oven light is on. Display shows the timer
countdown. On completion of cooking, the buzzer is sounded for five
seconds. Oven light is on. Display shows ‘Cooking complete’ while
buzzer is sounding.

States and Stimuli for the Microwave Oven

Stimulus Description
Half power The user has pressed the half-power button.

Full power The user has pressed the full-power button.

Timer The user has pressed one of the timer buttons.

Number The user has pressed a numeric key.

Door open The oven door switch is not closed.

Door closed The oven door switch is closed.

Start The user has pressed the Start button.

Cancel The user has pressed the Cancel button.

Key Points

• A model is an abstract view of a system that ignores system details. Complementary system
models can be developed to show the system’s context, interactions, structure and behavior.

• Context models show how a system that is being modeled is positioned in an environment with
other systems and processes.

• Use case diagrams and sequence diagrams are used to describe the interactions between users
and systems in the system being designed. Use cases describe interactions between a system and
external actors; sequence diagrams add more information to these by showing interactions
between system objects.

• Structural models show the organization and architecture of a system. Class diagrams are used to
define the static structure of classes in a system and their associations.

Key Points

• Behavioral models are used to describe the dynamic behavior of an executing system.
This behavior can be modeled from the perspective of the data processed by the system,
or by the events that stimulate responses from a system.

• Activity diagrams may be used to model the processing of data, where each activity
represents one process step.

• State diagrams are used to model a system’s behavior in response to internal or external
events.

Architectural Design

Topics Covered

• Architectural design decisions
• Architectural views
• Architectural patterns
• Application architectures

Architectural Design

• Architectural design is concerned with understanding how a software
system should be organized and designing the overall structure of
that system.
• Architectural design is the critical link between design and

requirements engineering, as it identifies the main structural
components in a system and the relationships between them.
• The output of the architectural design process is an architectural

model that describes how the system is organized as a set of
communicating components.

Agility and Architecture

• It is generally accepted that an early stage of agile processes is to
design an overall systems architecture.
• Refactoring the system architecture is usually expensive because it

affects so many components in the system

Vision
system

Object
identification

system

Arm
controller

Gripper
controller

Packaging
selection
system

Packing
system

Conveyor
controller

Architecture of a Packing Robot
Control SystemArchitecture of Twitter

Architectural Abstraction

• Architecture in the small is concerned with the architecture of
individual programs. At this level, we are concerned with the way that
an individual program is decomposed into components.
• Architecture in the large is concerned with the architecture of

complex enterprise systems that include other systems, programs,
and program components. These enterprise systems are distributed
over different computers, which may be owned and managed by
different companies.

Advantages of Explicit Architecture

• Stakeholder communication
• Architecture may be used as a focus of discussion by system stakeholders.

• System analysis
• Means that analysis of whether the system can meet its non-functional

requirements is possible.

• Large-scale reuse
• The architecture may be reusable across a range of systems
• Product-line architectures may be developed.

Architectural Representations

• Simple, informal block diagrams showing
entities and relationships are the most
frequently used method for documenting
software architectures.
• But these have been criticized because they

lack semantics, do not show the types of
relationships between entities nor the
visible properties of entities in the
architecture.
• Depends on the use of architectural models.

The requirements for model semantics
depends on how the models are used.

Architectural Design Decisions

Architectural Design Decisions

• Architectural design is a creative process so the process differs
depending on the type of system being developed.
• However, a number of common decisions span all design processes

and these decisions affect the non-functional characteristics of the
system. Is there a generic application

architecture that can act as a
template for the system that is
being designed?

How will the system be
distributed across hardware
cores or processors?

What architectural patterns or
styles might be used?

What will be the fundamental
approach used to structure
the system?

How will the structural
components in the system be
decomposed into
sub-components?

What strategy will be used to
control the operation of the
components in the system?

What architectural organization
is best for delivering the
non-functional requirements
of the system?

How should the architecture
of the system be
documented?

?

Architecture Reuse

• Systems in the same domain often have similar architectures that
reflect domain concepts.
• Application product lines are built around a core architecture with

variants that satisfy particular customer requirements.
• The architecture of a system may be designed around one of more

architectural patterns or ‘styles’.
• These capture the essence of an architecture and can be instantiated in

different ways.

Architecture and System Characteristics

• Performance
Localize critical operations and minimize communications. Use large rather than fine-grain
components.

• Security
Use a layered architecture with critical assets in the inner layers.

• Safety
Localize safety-critical features in a small number of sub-systems.

• Availability
Include redundant components and mechanisms for fault tolerance.

• Maintainability
Use fine-grain, replaceable components.

Architectural Views

Architectural Views

• What views or perspectives are useful when designing and
documenting a system’s architecture?
• What notations should be used for describing architectural models?
• Each architectural model only shows one view or perspective of the

system.
• It might show how a system is decomposed into modules, how the run-time

processes interact or the different ways in which system components are
distributed across a network. For both design and documentation, you usually
need to present multiple views of the software architecture.

Architectural Views

System
architecture

Logical
view

Physical
view

Process
view

Development
view

shows the key abstractions in the
system as objects or object classes

shows how the software is
decomposed for development

shows the system hardware and how
software components are distributed
across the processors in the system.

shows how, at run-time, the system is
composed of interacting processes

Representing Architectural Views

• Some people argue that the Unified Modeling Language (UML) is an
appropriate notation for describing and documenting system
architectures
• Architectural description languages (ADLs) have been developed but

are not widely used

Architectural Patterns

Architectural Patterns

• Patterns are a means of representing, sharing and reusing
knowledge.
• An architectural pattern is a stylized description of good design

practice, which has been tried and tested in different environments.
• Patterns should include information about what they are and when

the are not useful.
• Patterns may be represented using tabular and graphical descriptions.

The Model-View-Controller (MVC) Pattern
Name MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The
system is structured into three logical components that interact with
each other:
1. The Model component manages the system data and associated

operations on that data.
2. The View component defines and manages how the data is

presented to the user.
3. The Controller component manages user interaction (e.g., key

presses, mouse clicks, etc.) and passes these interactions to the
View and the Model.

When used • There are multiple ways to view and interact with data.
• The future requirements for interaction and presentation of data

are unknown.
Advantages • Allows the data to change independently of its representation

and vice versa.
• Supports presentation of the same data in different ways with

changes made in one representation shown in all of them.
Disadvantages Can involve additional code and code complexity when the data

model and interactions are simple.

Controller View

Model

View
selection

State
change

Change
notification

State query

User events

Maps user actions
to model updates
Selects view

Renders model
Requests model updates
Sends user events to
controller

Encapsulates application
state
Notifies view of state
changes

Web Application Architecture using the MVC
Pattern

Controller View

Model

Form to
display

Update
request

Change
notification

Refresh request

User events

Browser

HTTP request processing
Application-specific logic
Data validation

Dynamic page
generation
Forms management

Business logic
Database

The Layered Architecture Pattern
Name Layered architecture

Description Organizes the system into layers with related functionality associated
with each layer. A layer provides services to the layer above it so the
lowest-level layers represent core services that are likely to be used
throughout the system.

When used • Building new facilities on top of existing systems.
• The development is spread across several teams with each team

responsibility for a layer of functionality.
• There is a requirement for multi-level security.

Advantages • Allows replacement of entire layers so long as the interface is
maintained.

• Redundant facilities (e.g., authentication) can be provided in each
layer to increase the dependability of the system.

Disadvantages • In practice, providing a clean separation between layers is often
difficult and a high-level layer may have to interact directly with
lower-level layers rather than through the layer immediately
below it.

• Performance can be a problem because of multiple levels of
interpretation of a service request as it is processed at each layer.

User interface

Core business logic/application functionality
System utilities

System support (OS, database etc.)

User interface management
Authentication and authorization

The Architecture of the iLearn System

Authentication

Browser-based user interface

Configuration services

Group
management

Application
management

Identity
management

User storage
Logging and monitoring

Application storage
Interfacing

Search

Utility services

Application services

iLearn app

Email Messaging Video conferencing Newspaper archive

Word processing Simulation Video storage Resource finder

Spreadsheet Virtual learning environment History archive

The Repository Pattern
Name Repository

Description All data in a system is managed in a central repository that is
accessible to all system components. Components do not interact
directly, only through the repository.

When used • You have a system in which large volumes of information are
generated that has to be stored for a long time.

• Data-driven systems where the inclusion of data in the
repository triggers an action or tool.

Advantages • Components can be independent—they do not need to know of
the existence of other components.

• Changes made by one component can be propagated to all
components.

• All data can be managed consistently (e.g., backups done at the
same time) as it is all in one place.

Disadvantages • The repository is a single point of failure so problems in the
repository affect the whole system.

• May be inefficiencies in organizing all communication through
the repository.

• Distributing the repository across several computers may be
difficult.

Project
repository

Design
translator

Java
editor

UML
editors

Code
generators

Design
analyzer

Report
generator

Python
editor

A Repository Architecture for an IDE

The Client–Server Pattern
Name Client-server

Description In a client–server architecture, the functionality of the system is
organized into services, with each service delivered from a
separate server. Clients are users of these services and access
servers to make use of them.

When used • Data in a shared database has to be accessed from a range
of locations.

• Load on a system is variable.
Advantages • Servers can be distributed across a network.

• General functionality (e.g., a printing service) can be
available to all clients and does not need to be implemented
by all services.

Disadvantages • Each service is a single point of failure so susceptible to
denial of service attacks or server failure.

• Performance may be unpredictable because it depends on
the network as well as the system.

• May be management problems if servers are owned by
different organizations.

Catalog
server

Library
catalogue

Video
server

Film store

Picture
server

Photo store

Web
server

Film and
photo info.

Client 1 Client 2 Client 3 Client 4

Internet

A Client–Server Architecture for a Film Library

Pipe and Filter Architecture

• Functional transformations process their inputs to produce outputs.
• May be referred to as a pipe and filter model (as in UNIX shell).
• Variants of this approach are very common. When transformations

are sequential, this is a batch sequential model which is extensively
used in data processing systems.
• Not really suitable for interactive systems.

The Pipe and Filter Pattern
Name Pipe and filter

Description The processing of the data in a system is organized so that each processing
component (filter) is discrete and carries out one type of data
transformation. The data flows (as in a pipe) from one component to another
for processing.

When used Commonly used in data processing applications (both batch- and
transaction-based) where inputs are processed in separate stages to
generate related outputs.

Advantages • Easy to understand and supports transformation reuse.
• Workflow style matches the structure of many business processes.
• Evolution by adding transformations is straightforward.
• Can be implemented as either a sequential or concurrent system.

Disadvantages • The format for data transfer has to be agreed upon between
communicating transformations.

• Each transformation must parse its input and un-parse its output to the
agreed form.

• This increases system overhead and may mean that it is impossible to
reuse functional transformations that use incompatible data structures.

Example of the Pipe and Filter Architecture
used in a Payments System

Application Architectures

Application Architectures

• Application systems are designed to meet an organizational need.
• As businesses have much in common, their application systems also

tend to have a common architecture that reflects the application
requirements.
• A generic application architecture is an architecture for a type of

software system that may be configured and adapted to create a
system that meets specific requirements.

Use of Application Architectures

• As a starting point for architectural design.
• As a design checklist.
• As a way of organising the work of the development team.
• As a means of assessing components for reuse.
• As a vocabulary for talking about application types.

Examples of Application Types

• Data processing applications
• Data driven applications that process data in batches without explicit user

intervention during the processing.
• Transaction processing applications

• Data-centered applications that process user requests and update information in a
system database. (e.g., E-commerce systems & Reservation systems).

• Event processing systems
• Applications where system actions depend on interpreting events from the system’s

environment.
• Language processing systems

• Applications where the users’ intentions are specified in a formal language that is
processed and interpreted by the system. (e.g., Compilers & Command interpreters)

Transaction Processing Systems

• Process user requests for information from a database or requests to
update the database.
• From a user perspective a transaction is:
• Any coherent sequence of operations that satisfies a goal;
• For example - find the times of flights from London to Paris.

• Users make asynchronous requests for service which are then
processed by a transaction manager.

I/O
processing

Application
logic

Transaction
manager Database

Software Architecture of an ATM System

Input Process Output

ATM Database ATM

Get customer
account id

Query account

Print details

Return card

Dispense cash

Update account

Validate card

Select service

Information Systems Architecture

• Information systems have a generic architecture that can be
organized as a layered architecture.
• These are transaction-based systems as interaction with these

systems generally involves database transactions.
• Layers include:
• The user interface
• User communications
• Information retrieval
• System database

Architecture of the Mentcare System

Web browser

Report
generation

Transaction management

Patient database

Login Form and menu
manager

Data
validationRole checking

Security
management

Patient info.
manager

Data import
and export

User interface

User communications

Information retrieval and modification

Transaction management

Database

Authentication and
authorization

Web-based Information Systems

• Information and resource management systems are now usually web-
based systems where the user interfaces are implemented using a
web browser.
• For example, e-commerce systems are Internet-based resource

management systems that accept electronic orders for goods or
services and then arrange delivery of these goods or services to the
customer.
• In an e-commerce system, the application-specific layer includes

additional functionality supporting a ‘shopping cart’ in which users
can place a number of items in separate transactions, then pay for
them all together in a single transaction.

Language Processing Systems

• Accept a natural or artificial language as input
and generate some other representation of
that language.

• May include an interpreter to act on the
instructions in the language that is being
processed.

• Used in situations where the easiest way to
solve a problem is to describe an algorithm or
describe the system data
• Meta-case tools process tool descriptions,

method rules, etc and generate tools.

Source
language

instructions

Data Results

Translator

Interpreter

Abstract m/c
instructions

Check syntax
Check semantics
Generate

Fetch
Execute

Compiler Components

• A lexical analyzer takes input language tokens and converts them to an
internal form.
• A symbol table holds information about the names of entities (variables,

class names, object names, etc.) used in the text that is being translated.
• A syntax analyzer checks the syntax of the language being translated.
• A syntax tree is an internal structure representing the program being

compiled.
• A semantic analyzer that uses information from the syntax tree and the

symbol table to check the semantic correctness of the input language text.
• A code generator that ‘walks’ the syntax tree and generates abstract

machine code.

Syntax
analyzer

Lexical
analyzer

Semantic
analyzer

Abstract
syntax tree

Grammar
definition

Symbol
table

Output
definition

Pretty-
printer

Editor

Optimizer

Code
generator

Repository

Repository Architecture for a Language Processing System

Lexical
analysis

Syntactic
analysis

Semantic
analysis

Code
generation

Symbol table

Syntax tree

Pipe and Filter Compiler Architecture

Key Points

• A software architecture is a description of how a software system is
organized.
• Architectural design decisions include decisions on the type of

application, the distribution of the system, the architectural styles to
be used.
• Architectures may be documented from several different perspectives

or views such as a conceptual view, a logical view, a process view, and
a development view.
• Architectural patterns are a means of reusing knowledge about

generic system architectures. They describe the architecture, explain
when it may be used and describe its advantages and disadvantages.

Key Points

• Models of application systems architectures help us understand and
compare applications, validate application system designs and assess
large-scale components for reuse.
• Transaction processing systems are interactive systems that allow

information in a database to be remotely accessed and modified by a
number of users.
• Language processing systems are used to translate texts from one

language into another and to carry out the instructions specified in
the input language. They include a translator and an abstract machine
that executes the generated language.

