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Software Construction



SWEN 6301 Software 
Construction Definition

Software construction is the process of creating and 
evolving software source code that results on extensible, 

maintainable, robust, and secure software



What Is Software Construction?
Construction Activities

Construction focuses on coding and debugging but also includes 
detailed design, unit testing, integration testing, and other activities.

Coding implies the mechanical translation of a 
preexisting design into a computer language; 
construction is not at all mechanical and 
involves substantial creativity and judgment.



Specific Tasks of Construction Activities

Verifying that the groundwork has been laid so that 
construction can proceed successfully

Determining how your code will be tested

Designing and writing classes and routines

Creating and naming variables and named constants

Selecting control structures and organizing blocks of 
statements

Unit testing, integration testing, and debugging your 
own code

Reviewing other team members’ low-level designs and 
code and having them review yours

Polishing code by carefully formatting and commenting 
it

Integrating software components that were created 
separately

Tuning code to make it faster and use fewer resources

High-level View of Construction Activities



Why is Software Construction Important?

Construction is the only activity 
that’s guaranteed to be done

Construction is a large 
part of software 

development

Construction is the central 
activity in software development

With a focus on construction, the 
individual programmer’s productivity 

can improve enormously

Construction’s product, the source 
code, is often the only accurate 

description of the software



Software construction is the central activity in software 
development; construction is the only activity that’s guaranteed to 

happen on every project.

The main activities in construction are detailed design, coding, 
debugging, integration, and developer testing (unit testing and 

integration testing).

Other common terms for construction are “coding” and 
“programming.”

The quality of the construction substantially affects the quality of 
the software.

Your understanding of how to do construction determines how 
good a programmer you are.



Construction
Software is usually designed and created (coded/written/programmed) in integrated development 
environments (IDE) like Eclipse, Xcode or Microsoft Visual Studio that can simplify the process and 

compile the program to an executable unit.

Problem Definition

Requirements

Architecture

Construction

Testing

Deployment

Future Improvements



Key Construction Decisions
Choice of Programming 

Language Programming Conventions Your Location on the 
Technology Wave

Selection of Major 
Construction Practices



Choice of Programming Language

Studies have shown that the programming-
language choice affects productivity and code 

quality in several ways

Programmers are more productive using a 
familiar language than an unfamiliar one

Programmers working with high-level languages 
achieve better productivity and quality than 
those working with lower-level languages.



Choice of Programming Language



Choice of Programming Language





Programming Conventions

In high-quality software, you can see a relationship between the conceptual integrity 
of the architecture and its low-level implementation.

Before construction begins, spell out the programming conventions you’ll use. Coding convention details 
are at such a level of precision that they’re nearly impossible to retrofit into software after it’s written.

That’s the point of construction guidelines for variable names, class names, routine names, formatting conventions, and 
commenting conventions.

Without a unifying discipline, your creation will 
be a jumble of sloppy variations in style. Such 

variations tax your brain—and only for the 
sake of understanding coding-style differences 

that are essentially arbitrary.

http://checkstyle.sourceforge.net/ http://checkstyle.org/eclipse-cs/



Programming into a Language

Programmers who program “in” a language limit their 
thoughts to constructs that the language directly 
supports. If the language tools are primitive, the 

programmer’s thoughts will also be primitive.

Programmers who program “into” a language first 
decide what thoughts they want to express, and then 
they determine how to express those thoughts using 

the tools provided by their specific language.



Selection of Major Construction Practices



Every programming language has strengths and weaknesses. Be aware of 
the specific strengths and weaknesses of the language you’re using.

Establish programming conventions before you begin programming. It’s 
nearly impossible to change code to match them later.

More construction practices exist than you can use on any single project. 
Consciously choose the practices that are best suited to your project.

Ask yourself whether the programming practices you’re using are a 
response to the programming language you’re using or controlled by it. 

Remember to program into the language, rather than programming in it.

Your position on the technology wave determines what approaches will be 
effective— or even possible. Identify where you are on the technology 

wave, and adjust your plans and expectations accordingly



a very complicated task
Software Construction



Design in Construction

Creating High-Quality Code
Working Classes High Quality Routines Defensive Programming



Design in Construction



Software Design
The conception, invention, or contrivance of a scheme for turning a specification for computer software into 

operational software. Its the activity that links requirements to coding and debugging

A good top-level design 
provides a structure that can 

safely contain multiple 
lower-level designs



Design Challenges: Design is a Wicked Problem

3.  A wicked problem is a problem that could be clearly defined only by solving it, 
or by solving part of it.

The paradox implies that you have to solve the problem 
once in order to clearly define it and then solve it again to 

create a solution that works.

Horst Rittel and Melvin Webber 1973



Design Challenges: Design Is a Wicked Problem

The event is presented as an example of elementary forced resonance, with the wind providing 
an external periodic frequency that matched the natural structural frequency, even though the 
real cause of the bridge's failure was aeroelastic flutter, not resonance. A contributing factor 

was its solid sides, not allowing wind to pass through the bridge's deck. Thus, its design allowed 
the bridge to catch the wind and sway, which ultimately took it down.

Until the bridge collapsed, its 
engineers didn't know that 
aerodynamics needed to be 

considered to such an extent.

Only by building the bridge (solving 
the problem) could they learn about 
the additional consideration in the 

problem that allowed them to build 
another bridge that still stands.

The Tacoma Narrows bridge—an example of a wicked problem



Design Challenges: Design Is a Sloppy Process

The finished software design should look well organized and clean, but the 
process used to develop the design isn’t nearly as tidy as the end result.



Design Challenges: Design Is About Tradeoffs and Priorities

A key part of the designer’s job is 
to weigh competing design 
characteristics and strike a 

balance among those 
characteristics



Design Challenges: Design Involves Restrictions
The point of design is partly to create possibilities and partly to restrict 

possibilities 
The constraints of limited resources for constructing buildings force simplifications of the solution 

that ultimately improve the solution.



Design Challenges: Design Is Nondeterministic

Design Challenges: Design Is a Heuristic Process
Because design is nondeterministic, design techniques tend to be heuristics—“rules of 

thumb” or “things to try that sometimes work”—rather than repeatable processes that are 
guaranteed to produce predictable results



Design Challenges: Design Is Emergent

Designs don’t spring fully formed directly from 

someone’s brain. They evolve and improve 

through design reviews, informal discussions, 

experience writing the code itself, and experience 

revising the code.

DESIGN IS



Key Design Concepts
Managing Complexity Desirable Characteristics Levels of Design



Managing Complexity

Fred Brooks’s landmark paper, “No Silver Bullets: 
Essence and Accidents of Software Engineering” (1987).

Accidental and Essential Difficulties

Software development is made difficult 
because of two different classes of problems: 
the essential and the accidental

The properties that a thing must 
have in order to be that thing

The properties a thing happens 
to have and don’t really bear on 
whether the thing is what it is



Managing Complexity

The only profession in which a single mind is
obliged to span the distance from a bit to a few 
hundred megabytes, a ratio of 1 to 109 , or nine 
orders of magnitude (Dijkstra 1989)

Importance of Managing Complexity

No one’s skull is really big 
enough to contain a modern 
computer program (Dijkstra 1972)

The goal is to minimize the amount of a program you have to 
think about at any one time.

Dividing the system 
into subsystems

Break a complicated 
problem into simple pieces

More independent
the subsystems

Keeping routines 
short



Managing Complexity
How to Attack Complexity

Minimize the amount of essential complexity that 
anyone’s brain has to deal with at any one time

Keep accidental complexity from needlessly 
proliferating



Desirable Characteristics of a Design

Minimal Complexity Ease of Maintenance

Loose Coupling

Reusability

High Fan-In Low-to-Medium Fan-Out

Portability

Leanness

Stratification Standard Techniques

Extensibility



Levels of Design

Design is needed at several different levels 
of detail in a software system. Some design 

techniques apply at all levels, and some 
apply at only one or two.



Levels of Design

❶ Software System
The first level is the entire system. Some programmers 
jump right from the system level into designing classes, 
but it’s usually beneficial to think through higher level 
combinations of classes, such as subsystems or packages.



Levels of Design

❷ Division into Subsystems or Packages
The major design activity at this level is deciding how to 
partition the program into major subsystems and defining 
how each subsystem is allowed to use each other subsystem.

Within each subsystem, different methods of design might be used—choosing the approach 
that best fits each part of the system.

Common 
Subsystems

Business Rules
the laws, regulations, policies, 

and procedures that you encode 
into a computer system

System dependencies
If you're developing a program for 

Microsoft Windows, why limit yourself to 
the Windows environment? Isolate the 
Windows calls in a Windows-interface 

subsystem. If you later want to move your 
program to Mac OS or Linux, all you'll have 

to change is the interface subsystem

Database Access
centralize database operations in 
one place and reduce the chance 
of errors in working with the data.

User interface
May use several subordinate subsystems or 
classes for the GUI interface, command line 

interface, menu operations, window 
management, help system, and so forth



Levels of Design

❷ Division into Subsystems or Packages
The major design activity at this level is deciding how to 
partition the program into major subsystems and defining 
how each subsystem is allowed to use each other subsystem.

Within each subsystem, different methods of design might be used—choosing the approach 
that best fits each part of the system.

IMPORTANT RULE How the various subsystems can communicate?

If all subsystems can communicate with all other subsystems, you lose 
the benefit of separating them at all. 

Make each subsystem meaningful by restricting communications.



• How many different parts of the system does a 
developer need to understand at least a little bit 
to change something in the graphics subsystem?

• What happens when you try to use the business 
rules in another system?

• What happens when you want to put a new user 
interface on the system, perhaps a command-line 
UI for test purposes?

• What happens when you want to put data 
storage on a remote machine?

Levels of Design

• Allow communication between subsystems only 
on a “need to know” basis—and it had better be 
a good reason.

• If in doubt, it’s easier to restrict communication
early and relax it later than it is to relax it early 
and then try to tighten it up after you’ve coded 
several hundred inter-subsystem calls.

• The simplest relationship is to have one 
subsystem call routines in another. 

• A more involved relationship is to have one 
subsystem contain classes from another. 

• The most involved relationship is to have classes 
in one subsystem inherit from classes in another

Suppose for example that you define a system 
with six subsystems



Levels of Design

❸ Division into Classes within Packages
Design at this level includes identifying all classes in the 
system.

Object
Oriented
Programming



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

OOP Key 
Technologies

Objects

Classes

Encapsulation

Inheritance

Polymorphism

Abstraction



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

A class is the static thing you look at in the program listing while 
an object (instantiation of a class) is any specific entity that 

exists in your program at run time.

Book Class Instances of “Book” Class (Objects)



State Behavior

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Real-world objects share two characteristics
attribute/field method/function

Bike Class

My Bike

Foo Bike

class Bike {
int cadence = 0;
int speed = 0;
int gear = 1;

void changeCadence(int newValue) {
this.cadence = newValue;

}

void changeGear(int newValue) {
this.gear = newValue;

}

void speedUp(int increment) {
this.speed += increment; 

}

void applyBrakes(int decrement) {
this.speed -= decrement;

}

void printStates() {
System.out.println(

"cadence: " + this.cadence
+ " speed: " + this.speed
+ " gear: " + this.gear

);
}

}

1
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9
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These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

class Bike {
int cadence = 0;
int speed = 0;
int gear = 1;

void changeCadence(int newValue) {
this.cadence = newValue;

}

void changeGear(int newValue) {
this.gear = newValue;

}

void speedUp(int increment) {
this.speed += increment; 

}

void applyBrakes(int decrement) {
this.speed -= decrement;

}

void printStates() {
System.out.println(

"cadence: " + this.cadence
+ " speed: " + this.speed
+ " gear: " + this.gear

);
}

}
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class BikeDemo {

public static void main(String[] args) {

// create two different Bike Objects
Bike bike1 = new Bike();
Bike bike2 = new Bike();

// perform operations on bike1
bike1.changeCadence(50);
bike1.speedUp(10);
bike1.changeGear(2);
bike1.printStates();

// perform operations on bike2
bike2.changeCadence(50);
bike2.speedUp(10);
bike2.changeGear(2);
bike2.changeCadence(40);
bike2.speedUp(10);
bike2.changeGear(3);
bike2.printStates();

}
}

1
2
3
4
5
6
7
8
9

10
11
12
13
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18
19
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21
22
23
24

Bike.java

BikeDemo.java

What is the output?



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Encapsulation
The process of wrapping code and data 

together into a single unit

Data/Information Hiding
The variables of a class will be hidden from other classes, and can 

be accessed only through the methods of their current class



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Inheritance
Different kinds of objects often have a certain amount in 

common with each other

Object-oriented programming allows 
classes to inherit commonly used 

state and behavior from other classes 
and let you focus on the features that 

make a specific class unique

Super Class

class MountainBike extends Bicycle {
// new fields/methods specific to 
// Mountain bike go here

}

class RoadBike extends Bicycle {
// new fields/methods specific to 
// Road bike go here

}

class TandemBike extends Bicycle {
// new fields/methods specific to 
// Tandem bike go here

}



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Interfaces
Define class instances interaction with the outside world through the methods that they expose

class MountainBike implements Bicycle {
...

}
class RoadBike implements Bicycle {
...
}

class TandemBike implements Bicycle {
...
}

interface Bicycle {

void changeCadence(int newValue);

void changeGear(int newValue);

void speedUp(int increment);

void applyBrakes(int decrement);

void printStates();
}

1
2
3
4
5
6
7
8
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Implementing an interface allows a 
class to become more formal about the 

behavior it promises to provide.

Interfaces form a contract between the class 
and the outside world, and this contract is 

enforced at build time by the compiler.
If a class claims to implement an interface, all methods 

defined by that interface must appear in its source code.



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

public interface SomethingIsWrong {

void foo(int value) {
System.out.println("Something is wrong!");

}
}

Interfaces
Define class instances interaction with the outside world through the methods that they expose



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Abstract Classes/Methods
An abstract class is a class that is declared abstract and cannot be instantiated but can be sub-

classed. An abstract method is a method that is declared without an implementation

abstract class GraphicObject {
int x, y;

void moveTo(int newX, int newY) {
// Some code here

}

abstract void draw();
abstract void resize();

} 

class Rectangle extends GraphicObject {

void draw() {
// some implementation here   

}

void resize() {
// some implementation here

}
}

class Circle extends GraphicObject {

void draw() {
// some implementation here   

}

void resize() {
// some implementation here

}
}



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Abstraction
The process of hiding the implementation details from the user, only the functionality will be provided to 
the user. In other words, user will have the information on what the object does instead of how it does it.

In Java, Abstraction is achieved using 
abstract classes, and interfaces



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Polymorphism
The ability of an object to take on many forms



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Packages
Namespaces that organize a set of related classes and interfaces



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

OOP Key 
Technologies

Objects

Classes

Encapsulation

Inheritance

Polymorphism

Abstraction



Levels of Design

❹ Division into Data & Routines within Classes
When you examine the details of the routines inside a class, 
you can see that many routines are simple boxes but a few are 
composed of hierarchically organized routines, which require 
still more design.

The act of fully defining the class’s routines often results in a better 
understanding of the class’s interface, and that causes corresponding 

changes to the interface—that is, changes back at Level 3.



Levels of Design

❺ Internal Routine Design
Design at the routine level consists of laying out the detailed 
functionality of the individual routines. The design consists of 
activities such as writing pseudo-code, looking up algorithms 
in reference books, deciding how to organize the paragraphs 
of code in a routine, and writing programming-language code. 

Internal routine design is typically left to the individual programmer 
working on an individual routine.



Design Building Blocks: Heuristics
Because design is nondeterministic, skillful application of an effective set of 

heuristics is the core activity in good software design

GOAL: Minimal Complexity



Design Heuristics: Find Real-World Objects

Define each object’s public 
interface

Identify the objects and their 
attributes (methods and data)

Determine what can be done to 
each object

Determine what each object is 
allowed to do to other objects

Determine the parts of each object 
that will be visible to other objects

Computer programs are usually 
based on real-world entities

Identifying the objects’ attributes is no more complicated than identifying the objects 
themselves. Each object has characteristics that are relevant to the computer program.

The two generic things objects can do to each 
other are containment and inheritance.

The visibility of the parts of an object should be determined. 
This decision has to be made for both fields and methods

What are the operations performed on each 
object?

Define the formal, syntactic, programming-language level 
interfaces to each object.

The data and methods the object exposes to every other 
object is called the object’s “public interface.” The parts of 
the object that it exposes to derived objects via inheritance 
is called the object’s “protected interface.”



Design Heuristics: Form Consistent Abstractions

Good programmers create abstractions at the routine-interface 
level, class-interface level, and package-interface level

From a complexity point of view, the principal benefit of abstraction is that it allows you to ignore irrelevant details



Design Heuristics: Encapsulate Implementation Details
Encapsulation picks up where abstraction leaves off. It helps managing complexity by forbidding you

to look at the complexity.

Encapsulation says that, not only are you allowed to take a simpler view of a complex 
concept, you are not allowed to look at any of the details of the complex concept. 
What you see is what you get—it’s all you get!



Design Heuristics: Inherit
Inheritance is one of object-oriented programming’s most powerful tools. It can provide great benefits when used 

well, and it can do great damage when used naively.

Object-oriented programming allows 
classes to inherit commonly used 

state and behavior from other classes 
and let you focus on the features that 

make a specific class unique



Design Heuristics: Hide Secrets (Information Hiding)
Information hiding gives rise to the concepts of encapsulation and modularity and it is associated with the concept 

of abstraction.

Information hiding is a particularly powerful heuristic for Software’s 
Primary Technical Imperative because, beginning with its name and 

throughout its details, it emphasizes hiding complexity

David Parnas 1972 Fred Brooks 1995



In information hiding, each class (or package or routine) is characterized by the 
design or construction decisions that it hides from all other classes. The secret 

might be an area that’s likely to change, the format of a file, the way a data type 
is implemented, or an area that needs to be walled off from the rest of the 

program so that errors in that area cause as little damage as possible.

Design Heuristics: Hide Secrets (Information Hiding)

Secrets and the Right to Privacy



Design Heuristics: Hide Secrets (Information Hiding)

Two Categories of Secrets Barriers to Information Hiding Value of Information Hiding
Hiding complexity so that your brain doesn’t 
have to deal with it unless you’re specifically 
concerned with it

Hiding sources of change so that when 
change occurs, the effects are localized

Excessive distribution of information

Circular dependencies

Class data mistaken for global data

Perceived performance penalties

Information hiding is a theoretical techniques 
that has indisputably proven its value in 
practice, which has been true for a long time

Large programs that use information hiding 
were found years ago to be easier to modify—
by a factor of 4—than programs that don’t

Information hiding is part of the foundation of 
both structured and object-oriented design.



Design Heuristics: Identify Areas Likely to Change
Accommodating changes is one of the most challenging aspects of good program design. The goal is to isolate 

unstable areas so that the effect of a change will be limited to one routine, class, or package

Identify items that 
seem likely to change

Separate items that are 
likely to change

Isolate items that seem 
likely to change

Business rules Hardware 
dependencies Input and output

Nonstandard 
language 
features

Difficult design 
and construction 

areas
Status variables Data-size 

constraints

Areas Likely to Change
A good technique for identifying areas likely to change is first to identify the minimal subset of the program 

that might be of use to the user. The subset makes up the core of the system and is unlikely to change.



Design Heuristics: Keep Coupling Loose
Coupling describes how tightly a class or routine is related to other classes or routines.

The goal is to create classes and routines with small, 
direct, visible, and flexible relations to other classes 
and routines, which is known as “loose coupling.

Coupling 
Criteria

Size

Visibility

Flexibility

Kinds of Coupling
Simple-data-parameter coupling

Simple-object coupling

Object-parameter coupling

Semantic coupling

Classes and routines are first and foremost intellectual tools for 
reducing complexity. If they’re not making your job simpler, 

they’re not doing their jobs.



Design Heuristics: Look for Common Design Patterns
Design patterns provide the cores of ready-made solutions that can be used to solve many of software’s most 

common problems



Design Heuristics: Look for Common Design Patterns
Design patterns provide the cores of ready-made solutions that can be used to solve many of software’s most 

common problems

Reduce complexity by providing ready-made abstractions

Reduce errors by institutionalizing details of common solutions

Provide heuristic value by suggesting design alternatives

Streamline communication by moving the design dialog to a higher level

One potential trap with patterns is force-fitting code to use a  
pattern. In some cases, shifting code slightly to conform to a 
well-recognized pattern will improve understandability of the 
code. But if the code has to be shifted too far, forcing it to look 
like a standard pattern can sometimes increase complexity.

Another potential trap with patterns is feature-itis: using a 
pattern because of a desire to try out a pattern rather than 
because the pattern is an appropriate design solution.



Design Heuristics: Other Heuristics

Aim for Strong Cohesion Build Hierarchies Formalize Class Contracts

Assign Responsibilities Design for Test Avoid Failure

Choose Binding Time Consciously Make Central Points of Control Consider Using Brute Force

Draw a Diagram Keep Your Design Modular

Cohesion refers to how closely all the routines 
in a class or all the code in a routine support a 

central purpose—how focused the class is

Hierarchies are a useful tool for reducing complexity 
because they allow you to focus on only the level of 

detail you’re currently concerned with.

Contracts are useful for managing complexity 
because, at least in theory, the object can 
safely ignore any noncontractual behavior.

Asking what each object 
should be responsible for

A thought process that can yield interesting 
design insights is to ask what the system will
look like if you design it to facilitate testing.

The high-profile security lapses of various well-known systems 
the past few years make it hard to avoid security vulnerabilities 

but careful considerations should be taken to known failures.

Binding time refers to the time a specific value is 
bound to a variable. Code that binds early tends 
to be simpler, but it also tends to be less flexible.

The Principle of One Right Place—there should be One 
Right Place to look for any nontrivial piece of code, and 
One Right Place to make a likely maintenance change”

A brute-force solution that works is better 
than an elegant solution that doesn’t work

You actually want to leave out most of the 1000 words 
because one point of using a picture is that a picture can 

represent the problem at a higher level of abstraction

Modularity’s goal is to make each routine or class like a 
“black box”: You know what goes in, and you know what 

comes out, but you don’t know what happens inside.



Design Practices
Heuristics related to design attributes—what you want the completed design to 

look like.



Design Practices: Iterate
Design is an iterative process. You don’t usually go from point A only to point B; you go from point A to point B and 

back to point A

As you cycle through candidate designs and try different 
approaches, you’ll look at both high-level and low-level views.

The big picture you get from working with high-level issues 
will help you to put the low-level details in perspective. The 

details you get from working with low-level issues will provide a 
foundation in solid reality for the high-level decisions.



Design Practices: Divide and Conquer
As Edsger Dijkstra pointed out, no one’s skull is big enough to contain all the details of a complex program, and that 

applies just as well to design

Divide the program into different areas of concern, then tackle 
each of those areas individually. If you run into a dead end in 
one of the areas, iterate!

Incremental refinement is a powerful tool for 
managing complexity.



Design Practices: Top-Down and Bottom-Up

Top-down design begins at a high level of abstraction. 
You define base classes or other nonspecific design 

elements. As you develop the design, you increase the 
level of detail, identifying derived classes, collaborating 

classes, and other  detailed design elements.

Bottom-up design starts with specifics and works 
toward generalities. It typically begins by identifying 

concrete objects and then generalizes aggregations of 
objects and base classes from those specifics



Design Practices: Experimental Prototyping
You can’t fully define the design problem until you’ve at least partially solved it.

Prototyping means writing the absolute minimum 
amount of throwaway code that’s needed to 

answer a specific design question.

A risk of prototyping arises when developers do 
not treat the code as throwaway code.



Design Practices: Collaborative Design
In design, two heads are often better than one, whether those two heads are organized formally or informally



Design Practices: How Much Design Is Enough?
Sometimes only the barest sketch of an architecture is mapped out before coding begins. Other times, teams create 

designs at such a level of detail that coding becomes a mostly mechanical exercise.



Design Practices: Capturing Your Design Work

Insert design documentation into the code itself

Capture design discussions and decisions on a Wiki

Write e-mail summaries

Use a digital camera

Save design flip charts

Use CRC (Class, Responsibility, Collaborator) cards

Create UML diagrams at appropriate levels of detail



Software’s Primary Technical Imperative is managing complexity . This is greatly aided by a 
design focus on simplicity.

Simplicity is achieved in two general ways: minimizing the amount of essential complexity 
that anyone’s brain has to deal with at any one time, and keeping accidental complexity 

from proliferating needlessly.

Design is heuristic. Dogmatic adherence to any single methodology hurts creativity and 
hurts your programs

Good design is iterative; the more design possibilities you try, the better your final design 
will be.

Information hiding is a particularly valuable concept. Asking “What should I hide?” settles 
many difficult design issues.

Lots of useful, interesting information on design is available outside this book. The 
perspectives presented here are just the tip of the iceberg.



Working Classes
In the dawn of computing, programmers thought about programming in terms of statements. 

Throughout the 1970s and 1980s, programmers began thinking about programs in terms of routines. 
In the twenty-first century, programmers think about programming in terms of classes.



A class is a collection of data and 
routines that share a cohesive, well-
defined responsibility. A class might 
also be a collection of routines that 
provides a cohesive set of services 
even if no common data is involved

Maximizes the portion of a program that you can 
safely ignore while working on another section of code



Class Foundations: Abstract Data Types (ADTs)

An ADT might be a graphics window with all the 
operations that affect it, a file and file operations, 
an insurance-rates table and the operations on it, 
or something else

An abstract data type is a collection of data and operations that work on that data.

Understanding ADTs is essential to understanding 
object-oriented programming.

Tap into the power of being able to work in the 
problem domain rather than at the low-level 

implementation domain!
Instead of inserting a node into a linked list, you can add a cell to 
a spreadsheet, a new type of window to a list of window types, 

or another passenger car to a train simulation



Class Foundations: Abstract Data Types (ADTs)

Suppose you’re writing a program to control text output to the screen using a 
variety of typefaces, point sizes, and font attributes (such as bold and italic)

A group of font routines bundled with 
the data—the typeface names, point 

sizes, and font attributes—they 
operate on.

Ad hoc approach to manipulating fonts. For 
example, if you need to change to a 12-
point font size, which happens to be 16 

pixel high

Using ADT Not Using ADT

currentFont.size = 16
currentFont.size = PointsToPixels( 12 )
currentFont.sizeInPixels = PointsToPixels( 12 )
currentFont.sizeInPixels = PointsToPixels( 12 )
currentFont.attribute = currentFont.attribute or 0x02
currentFont.attribute = currentFont.attribute or BOLD
currentFont.bold = True

currentFont.SetSizeInPoints( sizeInPoints )
currentFont.SetSizeInPixels( sizeInPixels )
currentFont.SetBoldOn()
currentFont.SetBoldOff()
currentFont.SetItalicOn()
currentFont.SetItalicOff()
currentFont.SetTypeFace( faceName )



Class Foundations: Abstract Data Types (ADTs)

You can hide 
implementation details

Changes don’t affect the 
whole program

You can make the interface 
more informative

It’s easier to improve 
performance

The program is more 
obviously correct

The program becomes 
more self-documenting

You don’t have to pass 
data all over your program

You’re able to work with real-world entities rather than 
with low-level implementation structures



Class Foundations: Abstract Data Types (ADTs)

Suppose you’re writing software that controls the cooling system for a nuclear 
reactor. You can treat the cooling system as an abstract data type.

coolingSystem.GetTemperature()
coolingSystem.SetCirculationRate( rate )
coolingSystem.OpenValve( valveNumber )
coolingSystem.CloseValve( valveNumber )

The specific environment would determine the 
code written to implement each of these 

operations.

The rest of the program could deal with the 
cooling system through these functions and 

wouldn’t have to worry about internal details 
of data-structure implementations, data-
structure limitations, changes, and so on.



Class Foundations: Abstract Data Types (ADTs)

Build or use typical low-
level data types as ADTs, 

not as low-level data types

Treat common objects 
such as files as ADTs

Treat even simple 
items as ADTs

Refer to an ADT 
independently of the 
medium it’s stored on



Class Foundations: Abstract Data Types (ADTs)
Handling Multiple Instances of Data with ADTs in Non-Object-Oriented Environments

SetCurrentFontSize( sizeInPoints )
SetCurrentFontBoldOn()
SetCurrentFontBoldOff()
SetCurrentFontItalicOn()
SetCurrentFontItalicOff()
SetCurrentFontTypeFace( faceName )

CreateFont( fontId )
DeleteFont( fontId )
SetCurrentFont( fontId )

Option 1: Explicitly identify instances 
each time you use ADT services.

Option 2: Explicitly provide the data 
used by the ADT services.

Option 3: Use implicit instances



Good Class Interfaces

The first and probably most important step in creating a 
high-quality class is creating a good interface.

Creating a good abstraction for the interface to represent and ensuring that the details remain hidden 
behind the abstraction.

Good Abstraction Good Encapsulation



Good Class Interfaces: Good Abstraction
A class interface provides an abstraction of the implementation that's hidden behind the interface

Employee

It would contain data describing 
the employee's name, address, 
phone number, and so on. It 
would offer services to initialize 
and use an employee

Internally, this class might have additional routines and data to 
support these services, but users of the class don't need to 
know anything about them, so it is great.



Good Class Interfaces: Good Abstraction
A class interface provides an abstraction of the implementation that's hidden behind the interface

It's hard to see any connection among the command 
stack and report routines or the global data. The class 
interface doesn't present a consistent abstraction. The 
routines should be reorganized into more focused 
classes, each of which provides a better abstraction in 
its interface.

The cleanup of this interface assumes that some of 
the original routines were moved to other, more 
appropriate classes and some were converted to 
private routines used by InitializeUserInterface() and 
the other routines.



Good Class Interfaces: Good Abstraction
The pursuit of good abstract interfaces gives rise to several guidelines for 

creating class interfaces.

Present a consistent 
level of abstraction in 

the class interface
One Class = One ADT

Each class should implement one and only one ADT.

If you find a class implementing more than one ADT, or if you 
can't determine what ADT the class implements, it's time to 

reorganize the class into one or ore well defined ADTs.



Good Class Interfaces: Good Abstraction
The pursuit of good abstract interfaces gives rise to several guidelines for 

creating class interfaces.

Present a consistent 
level of abstraction in 

the class interface
One Class = One ADT

Ask yourself whether the fact that a container class is used should be part of the abstraction. Usually that's 
an implementation detail that should be hidden from the rest of the program.



Good Class Interfaces: Good Abstraction
The pursuit of good abstract interfaces gives rise to several guidelines for 

creating class interfaces.

Present a consistent 
level of abstraction in 

the class interface
One Class = One ADT

Programmers might argue that inheriting from 
ListContainer is convenient because it supports 
polymorphism, allowing an external search or sort 
function that takes a ListContainer object.

That argument fails the main test for inheritance, which is, "Is 
inheritance used only for "is a" relationships?“ To inherit from 
ListContainer would mean that EmployeeCensus "is a“ 
ListContainer, which obviously false



Good Class Interfaces: Good Abstraction



Good Class Interfaces: Good Abstraction
The pursuit of good abstract interfaces gives rise to several guidelines for 

creating class interfaces.

Present a consistent 
level of abstraction 

in the class interface

Be sure you understand 
what abstraction the 
class is implementing

Provide services 
in pairs with 

their opposites

Move unrelated 
information to 
another class

Make interfaces programmatic 
rather than semantic when 

possible

Beware of erosion of the 
interface’s abstraction 

under modification

Don’t add public members 
that are inconsistent with the 

interface abstraction

Consider abstraction and 
cohesion together



Good Class Interfaces: Good Encapsulation

Abstraction helps to manage complexity by providing models that allow 
you to ignore implementation details. Encapsulation is the enforcer 

that prevents you from looking at the details even if you want to
Without encapsulation, abstraction tends to break down



Good Class Interfaces: Good Encapsulation
Minimize accessibility of classes and members

If you're wondering whether a specific 
routine should be public, private, or 
protected, one school of thought is 
that you should favor the strictest 
level of privacy that's workable

Meyers 1998, Bloch 2001

If exposing the routine is consistent with 
the abstraction, it's probably fine to 

expose it. If you're not sure, hiding more 
is generally better than hiding less.



Good Class Interfaces: Good Encapsulation
Don’t expose member data in public

Exposing member data is a violation of encapsulation and 
limits your control over the abstraction

float x;
float y;
float z;

float GetX();
float GetY();
float GetZ();
void SetX( float x );
void SetY( float y );
void SetZ( float z );



Good Class Interfaces: Good Encapsulation
Avoid putting private implementation details into a class’s interface

With true encapsulation, programmers would not be able to see implementation details at all



Good Class Interfaces: Good Encapsulation
Don’t make assumptions about the class’s users

A class should be designed and implemented to adhere to the contract implied by the class interface. It 
shouldn’t make any assumptions about how that interface will or won’t be used,

// initialize x, y, and z to 1.0 because DerivedClass blows
// up if they're initialized to 0.0



Good Class Interfaces: Good Encapsulation
Favor read-time convenience to write-time convenience

Code is read far more times than it’s written, even during initial development

Favoring a technique that speeds write-time 
convenience at the expense of read-time 

convenience is a false economy.



Good Class Interfaces: Good Encapsulation
Be very, very wary of semantic violations of encapsulation

The difficulty of semantic encapsulation compared to syntactic encapsulation is similar.

Not calling Class A’s InitializeOperations() routine because you know that Class A’s PerformFirstOperation() routine calls it 
automatically.

Not calling the database.Connect() routine before you call employee.Retrieve( database ) because you know that the 
employee.Retrieve() function will connect to the database if there isn’t already a connection.

Not calling Class A’s Terminate() routine because you know that Class A’s PerformFinalOperation() routine has already 
called it.

Using a pointer or reference to ObjectB created by ObjectA even after ObjectA has gone out of scope, because you know 
that ObjectA keeps ObjectB in static storage and ObjectB will still be valid.

Using Class B’s MAXIMUM_ELEMENTS constant instead of using ClassA.MAXIMUM_ELEMENTS , because you know that 
they’re both equal to the same value.



Good Class Interfaces: Good Encapsulation
Watch for coupling that’s too tight

In general, the looser the connection, the better

Minimize accessibility of classes and members.

Make data private rather than protected in a 
base class to make derived classes less tightly 

coupled to the base class.

Avoid exposing member data in a class’s public 
interface

Be wary of semantic violations of encapsulation

Observe the “Law of Demeter”



Design and Implementation Issues

Defining good class interfaces goes a long way 
toward creating a high-quality program.



Design and Implementation Issues
Containment (“has a” Relationships)

Containment is the simple idea that a class contains a primitive data element or object. Inheritance is 
more popular than containment, not because it's better.

Implement “has a” through 
containment

Implement “has a” through private 
inheritance as a last resort

Be critical of classes that contain more 
than about seven data members

An employee “has a” name, “has a” phone 
number, “has a” tax ID. You can usually 
accomplish this by making the name, 
phone number, and tax ID member data of 
the Employee class.

In some instances you might find that you can’t 
achieve containment through making one 
object a member of another

The number “7±2” has been found to be a 
number of discrete items a person can 
remember while performing other tasks



Design and Implementation Issues
Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to 
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Implement “is a” through 
public inheritance

When a programmer decides to create a new class 
by inheriting from an existing class, that 
programmer is saying that the new class “is a” 
more specialized version of the older class.

For each member routine, will the routine 
be visible to derived classes? Will it have a 
default implementation? Will the default 
implementation be overridable?

For each data member (including variables, 
named constants, enumerations, and so 
on), will the data member be visible to 
derived classes?

If the derived class isn’t going to adhere 
completely to the same interface contract 
defined by the base class, inheritance is not the 
right implementation technique. Consider 
containment or making a change further up the 
inheritance hierarchy.



Design and Implementation Issues
Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to 
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Design and document 
for inheritance or 

prohibit it
Inheritance adds complexity to a program, 
and, as such, it’s a dangerous technique

If a class isn’t designed to be inherited from, make its members 
non-virtual in C++, final in Java, or non-overridable in 
Microsoft Visual Basic so that you can’t inherit from it.



Design and Implementation Issues
Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to 
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Adhere to the Liskov
Substitution Principle 

(LSP)
Barbara Liskov argued that you shouldn’t 
inherit from a base class unless the derived 
class truly “is a” more specific version of 
the base class

Subclasses must be usable through the base class interface 
without the need for the user to know the difference. In other 
words, all the routines defined in the base class should mean 
the same thing when they’re used in each of the derived 
classes.

If you have a base class of Account and derived classes of 
CheckingAccount, SavingsAccount, and AutoLoanAccount, a 
programmer should be able to invoke any of the routines derived 
from Account on any of Account's subtypes without caring about 
which subtype a specific account object is the derived classes.



Design and Implementation Issues
Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to 
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Be sure to inherit only 
what you want to inherit
A derived class can inherit member routine 
interfaces, implementations, or both. An abstract overridable routine means that the derived class inherits the 

routine’s interface but not its implementation.

An overridable routine means that the derived class inherits the routine’s 
interface and a default implementation and it is allowed to override the 
default implementation

A non-overridable routine means that the derived class inherits the 
routine’s interface and its default implementation and it is not allowed to 
override the routine’s implementation.



Design and Implementation Issues
Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to 
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Don’t “override” a non-
overridable member 

function

Move common interfaces, data, 
and behavior as high as possible 

in the inheritance tree

Be suspicious of base 
classes of which there is 
only one derived class

Be suspicious of classes 
that override a routine 
and do nothing inside 

the derived routine

Avoid deep inheritance 
trees

Make all data private, 
not protected



Design and Implementation Issues
Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to 
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Prefer polymorphism to 
extensive type checking



Design and Implementation Issues
Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to 
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Why Are There So Many Rules for Inheritance?
If multiple classes share common data but not behavior, create 
a common object that those classes can contain.

If multiple classes share common behavior but not data, derive 
them from a common base class that defines the common 
routines

If multiple classes share common data and behavior, inherit 
from a common base class that defines the common data and 
routines.

Inherit when you want the base class to control your interface; 
contain when you want to control your interface.



Design and Implementation Issues
Member Functions and Data

Keep the number of routines in a 
class as small as possible

Disallow implicitly generated 
member functions and operators 

you don’t want

Minimize the number of 
different routines called by a class
One study found that the number of faults 
in a class was statistically correlated with 
the total number of routines that were 
called from within a class

Minimize indirect routine calls to 
other classes

In general, minimize the extent to 
which a class collaborates with 

other classes

Initialize all member data in all 
constructors, if possible

Enforce the singleton property 
by using a private constructor

Prefer deep copies to shallow 
copies until proven otherwise

A deep copy of an object is a member-wise 
copy of the object’s member data; a 
shallow copy typically just points to or 
refers to a single reference copy



Reasons to Create a Class
Model real-world objects

Create a class for each real-world object type that your program models



Reasons to Create a Class
Model abstract objects

An object that isn’t a concrete, real-world object but that provides an abstraction of other concrete objects.

For example, the classic Shape object. 
Rectangle and Triangle really exist, but 
Shape is an abstraction of other 
specific shapes.



Reasons to Create a Class
Reduce complexity

Create a class to hide information so that you won’t need to think about it, no need to know about its internal 
workings. Also, to minimize code size and improve maintainability



Reasons to Create a Class
Isolate complexity

Complexity in all forms—complicated algorithms, large data sets, intricate communications protocols, and so 
on—is prone to errors

If an error does occur, it will be easier 
to find if it isn’t spread through the 
code but is localized within a class



Reasons to Create a Class

Hide implementation 
details

Limit effects of 
changes

Hide global data

Streamline parameter 
passing

Make central points 
of control

Facilitate reusable code

Isolate areas that are likely to 
change so that the effects of 
changes are limited to the scope of 
a single class or a few classes

If you need to use global data, you can hide its 
implementation details behind a class interface. Working 
with global data through access routines provides several 
benefits compared to working with global data directly.

If you’re passing a parameter among 
several routines, that might indicate a 
need to factor those routines into a 
class that share the parameter as 
object data

It’s a good idea to control each task 
in one place

Code put into well-factored classes can be reused in other 
programs more easily than the same code embedded in 
one larger class



Classes to Avoid

Avoid creating god classes, 
all-knowing and all-powerful

Eliminate irrelevant 
classes

Avoid classes named after 
verbs

A class that has only behavior but no data is 
generally not really a class. Consider turning 
a class like DatabaseInitialization() or 
StringBuilder() into a routine on some other 
class.

If a class consists only of data but no 
behavior, ask yourself whether it’s really a 
class and consider demoting it so that its 
member data just becomes attributes of one 
or more other classes.

If a class spends its time retrieving data from other 
classes using Get() and Set() routines (that is, 
digging into their business and telling them what 
to do), ask whether that functionality might better 
be organized into those other classes rather than 
into the god class (Riel 1996).



Beyond Classes: Packages
Classes are currently the best way for programmers to achieve modularity. But 

modularity is a big topic, and it extends beyond classes.



What are the right and wrong things?



Class interfaces should provide a consistent abstraction. Many 
problems arise from violating this single principle.

A class interface should hide something—a system interface, a design 
decision, or an implementation detail.

Containment is usually preferable to inheritance unless you’re 
modeling an “is a” relationship.

Inheritance is a useful tool, but it adds complexity, which is counter to 
Software’s Primary Technical Imperative of managing complexity.

Classes are your primary tool for managing complexity. Give their 
design as much attention as needed to accomplish that objective.



High Quality Routines



What is a routine?

A routine is an individual method or procedure invocable for a single 
purpose. Examples include a function in C++, a method in Java, a 

function or sub procedure in Microsoft Visual Basic

What is a high-quality routine? That’s a harder question.



What is a high-quality routine?



What is a high-quality routine?
The routine has a bad name. HandleStuff() tells you nothing about what the routine does.

The routine isn’t documented.

The routine has a bad layout. The physical organization of the code on the page gives few 
hints about its logical organization.

The routine’s input variable, inputRec, is changed. If it’s an input variable, its value should 
not be modified

The routine reads and writes global variables—it reads from corpExpense and writes to 
profit . It should communicate with other routines more directly than by reading and 
writing global variables.

The routine doesn’t have a single purpose. It initializes some variables, writes to a database, 
does some calculations—none of which seem to be related to each other in any way. A 
routine should have a single, clearly defined purpose.

The routine doesn’t defend itself against bad data. If crntQtr equals 0 , the expression 
ytdRevenue * 4.0 / (double) crntQtr causes a divide-by-zero error.

The routine uses several magic numbers: 100 , 4.0, 12 , 2 , and 3 .

Some of the routine’s parameters are unused: screenX and screenY are not referenced 
within the routine.

One of the routine’s parameters is passed incorrectly: prevColor is labeled as a reference parameter (&) even though it isn’t assigned a value within the routine.

The routine has too many parameters. The upper limit for an 
understandable number of parameters is about 7

The routine’s parameters are poorly ordered and are not 
documented



Valid Reasons to Create a Routine
Reduce Complexity

The single most important reason to create a routine is to reduce a program’s complexity. Create 
a routine to hide information so that you won’t need to think about it.

Other reasons to create routines: 
minimizing code size and improving 
maintainability and correctness

But without the abstractive power 
of routines, complex programs 
would be impossible to manage.

An indication that a routine needs 
to be broken out is loop deep 
nesting or a conditional



Valid Reasons to Create a Routine
Introduce an intermediate, understandable abstraction
Putting a section of code into a well-named routine is one of the best ways to document its purpose

leafName = GetLeafName( node )



Valid Reasons to Create a Routine
Avoid duplicate code

Undoubtedly the most popular reason for creating a routine is to avoid duplicate code.



Valid Reasons to Create a Routine
Hide Sequences

It’s a good idea to hide the order in which events happen to be processed

For example, a sequence might be 
found when you have two lines of 
code that read the top of a stack and 
decrement a stackTopvariable.

Put those two lines of code into a 
PopStack() routine to hide the 
assumption about the order in 
which the two operations must be 
performed

Hiding that assumption will be better than 
baking it into code from one end of the 
system to the other.



Valid Reasons to Create a Routine
Hide Pointer Operations

Pointer operations tend to be hard to read and error prone. By isolating them in routines, you can 
concentrate on the intent of the operation rather than on the mechanics of pointer manipulation

if the operations are done in only 
one place, you can be more certain 
that the code is correct. If you find a 
better data type than pointers, you 
can change the program without 
traumatizing the code that would 
have used the pointers.



Valid Reasons to Create a Routine
Improve portability

Use of routines isolates nonportable capabilities, explicitly identifying
and isolating future portability work.

Nonportable capabilities include nonstandard language features, 
hardware dependencies, operating-system dependencies, and so on.



Valid Reasons to Create a Routine
Simplify Complicated Boolean Tests

Understanding complicated boolean tests in detail is rarely necessary for understanding program flow.

Putting such a test into a function 
makes the code more readable 
because (1) the details of the test 
are out of the way and (2) a 
descriptive function name 
summarizes the purpose of the test.

Giving the test a function of its own emphasizes 
its significance. It encourages extra effort to 
make the details of the test readable inside its 
function.



Valid Reasons to Create a Routine
Improve Performance

You can optimize the code in one place instead of in several places.

Centralizing code into a routine 
means that a single optimization 
benefits all the code that uses that 
routine, whether it uses it directly or 
indirectly.

Having code in one place makes it practical to 
recode the routine with a more efficient 
algorithm or in a faster, more efficient 
language.



Operations That Seem Too Simple to Put Into Routines

Constructing a whole routine to contain two or three lines of code 
might seem like overkill, but experience shows how helpful a good 

small routine can be.
Small routines offer several advantages. One is that they improve readability.



Operations That Seem Too Simple to Put Into Routines

If that original line of code had still been in a dozen places, the test would have been repeated a dozen 
times, for a total of 36 new lines of code. A simple routine reduced the 36 new lines to 3.



Design at the Routine Level
Cohesion Coupling
how closely the operations 

in a routine are related
the relationships between 

functions



Design at the Routine Level: Cohesion
Some programmers prefer the term “strength”; how strongly related are the operations in a routine

Cosine() CosineAndTan()
A function like Cosine() is perfectly cohesive 
because the whole routine is dedicated to 

performing one function.

A function like CosineAndTan() has lower cohesion 
because it tries to do more than one thing. The 

goal is to have each routine do one thing well and 
not do anything else.

One study of 450 routines found that 50 
percent of the highly cohesive routines 
were fault free, whereas only 18 percent 
of routines with low cohesion were fault 
free 
(Card, Church, and Agresti1986)

Another study of a different 450 routines (which is just 
an unusual coincidence) found that routines with the 
highest coupling-to-cohesion ratios had 7 times as 
many errors as those with the lowest coupling-to-
cohesion ratios and were 20 times as costly to fix 
(Selby and Basili1991)



Design at the Routine Level: Desired Cohesion
Functional Cohesion

Functional cohesion is the strongest and best kind of cohesion, 
occurring when a routine performs one and only one operation

• Compute Cosine of Angle
• Verify Alphabetic Syntax
• Read Transaction Record
• Determine Customer Mortgage Repayment
• Compute Point of Impact of Missile
• Calculate Net Employee Salary
• Assign Seat to Airline Customer



Design at the Routine Level: Acceptable Cohesion
Sequential Cohesion

Sequential cohesion exists when a routine contains operations that must be performed in a specific order, that 
share data from step to step, and that don’t make up a complete function when done together.

For example, given a birth date, calculates an employee’s age and time to retirement.
If the routine calculates the age and then uses that result to calculate the employee’s time to retirement, it has 
sequential cohesion.



Design at the Routine Level: Acceptable Cohesion
Communicational Cohesion

Communicational cohesion occurs when operations in a routine make use of the same data and aren’t 
related in any other way.

For example, suppose you wrote a function to query a database to get the name and 
office number for an employee in your company.
It may make sense for your application, but the only common point between the two operations is that the data 
comes from the same employee record.



Design at the Routine Level: Acceptable Cohesion
Temporal Cohesion

Temporal cohesion occurs when operations are combined into a routine because they are all done at the same time.

Some programmers consider temporal cohesion to be unacceptable because it’s 
sometimes associated with bad programming practices such as having a mixture of 
dissimilar code in a Startup() routine.

To avoid this problem, think of temporal 
routines as organizers of other events.

have the temporally cohesive routine call other routines to 
perform specific activities rather than performing the operations 
directly itself. But this raises the issue of choosing a name that 
describes the routine at the right level of abstraction

It will be clear that the point of the routine is to orchestrate activities rather than to do 
them directly.



Design at the Routine Level: Unacceptable Cohesion
Procedural Cohesion

Procedural cohesion occurs when operations in a routine are done in a specified order.

The routine has procedural cohesion because it puts a set of operations in a specified 
order and the operations don’t need to be combined for any other reason.

• Clean Utensils from Previous Meal
• Prepare Chicken for Roasting
• Make Phone Call
• Take Shower
• Chop Vegetables
• Set Table

To achieve better cohesion, put 
the separate operations into their 

own routines.



Design at the Routine Level: Unacceptable Cohesion
Logical Cohesion

Logical cohesion occurs when several operations are stuffed into the same routine and one of the 
operations is selected by a control flag that’s passed in.

The control flow or “logic” of the routine is the only thing that ties the operations 
together—they’re all in a big if statement or case statement together.



Design at the Routine Level: Unacceptable Cohesion
Logical Cohesion

Logical cohesion occurs when several operations are stuffed into the same routine and one of the 
operations is selected by a control flag that’s passed in.

It’s usually all right, to create a logically cohesive routine if its code consists solely of a 
series of if or case statements and calls to other routines.

if the routine’s only function is to dispatch commands and it doesn’t do any of the processing itself, that’s usually a 
good design.

The technical term for this kind of routine is “event handler” An event 
handler is often used in interactive environments such as the Windows 

and Linux GUI environments.



Design at the Routine Level: Unacceptable Cohesion
Coincidental Cohesion

Coincidental cohesion occurs when the operations in a routine have no discernible relationship to each other

It’s hard to convert coincidental cohesion to any better kind of cohesion—you usually 
need to do a deeper redesign and reimplementation

• Fix Car
• Bake Cake
• Walk Dog
• Fill our Astronaut-Application Form
• Get out of Bed
• Go the the Movies



Design at the Routine Level: Bad Coupling
Tight Coupling

Large dependence on the structure of one module by another.

Design at the Routine Level: Good Coupling
Loose Coupling

Modules with loose coupling are more independent and easier to maintain

Design at the Routine Level: Worst Coupling
Content Coupling

A module changes another module’s data



Design at the Routine Level: Not Worst Coupling
Common Coupling

This occurs when all modules reference the same global data structure

Design at the Routine Level: Not Worst Coupling
External Coupling

Modules communicate through an external medium, such as files

Design at the Routine Level: Acceptable Coupling
Control Coupling

Two modules exhibit control coupling if one (``module A'') passes to the other (``module B'') a piece of 
information that is intended to control the internal logic of the other.



Design at the Routine Level: Acceptable Coupling
Stamp Coupling

Two modules (``A'' and ``B'') exhibit stamp coupling if one passes directly to the other a ``composite'' piece of 
data-that is, a piece of data with meaningful internal structure -such as a record (or structure), array, or 

(pointer to) a list or tree.



Design at the Routine Level: Ideal Coupling

Modules A and B have the lowest possible level of coupling -no 
coupling at all -if they have no direct communication and are also 
not ``tied together'' by shared access to the same global data area 
or external device.
it implies that A and B be implemented, tested, and maintained (almost) completely independently; neither will affect 

the behavior of the other



Good Routine Names
A good name for a routine clearly describes everything the routine does

Describe everything the routine does Avoid meaningless, vague, or wishy washy verbs

Don’t differentiate routine names solely by number Make names of routines as long as necessary

To name a function, use a description of the return value To name a procedure, use a strong verb followed by an object

Use opposites preciselyEstablish conventions for common operations

describe all the outputs and side effects. If a routine computes report 
totals and opens an output file, ComputeReportTotals() is not an adequate 
name for the routine. ComputeReportTotalsAndOpenOutputFile() is an 
adequate name but is too long and silly.

Some verbs are elastic, stretched to cover just about any meaning. Routine 
names like HandleCalculation() , PerformServices() , OutputUser() , 
ProcessInput() , and DealWithOutput() don’t tell you what the routines do.

describe all the outputs and side effects. If a routine computes report 
totals and opens an output file, ComputeReportTotals() is not an adequate 
name for the routine. ComputeReportTotalsAndOpenOutputFile() is an 
adequate name but is too long and silly.

A procedure with functional cohesion usually performs an operation on an 
object. The name should reflect what the procedure does, and an 
operation on an object implies a verb-plus object name.

In some systems, it’s important to distinguish among different kinds of 
operations. A naming convention is often the easiest and most reliable 
way of indicating these distinctions



How Long Can a Routine Be?

The theoretical best maximum length is often described as one 
screen or one or two pages of program listing, approximately 
50 to 150 lines. In this spirit, IBM once limited routines to 50 
lines, and TRW limited them to two pages (McCabe 1976)

A large percentage of routines in object-oriented programs will be accessor routines, which will be very short. From 
time to time, a complex algorithm will lead to a longer routine, and in those circumstances, the routine should be 

allowed to grow organically up to 100–200 lines (A line is a non comment, nonblank line of source code).



How to Use Routine Parameters?

One often-cited study by Basiliand Perricone (1984) found that 
39 percent of all errors were internal interface errors—errors in 
communication between routines.

Interfaces between routines are some of the most error-prone areas of a program



How to Use Routine Parameters?
Put parameters in input-modify-output order

Instead of ordering parameters randomly or alphabetically, list the parameters that are 
input-only first, input-and-output second, and output-only third



How to Use Routine Parameters?
If several routines use similar parameters, put the similar parameters in a consistent order

The order of routine parameters can be a mnemonic, and inconsistent order can make 
parameters hard to remember.



How to Use Routine Parameters?
Use all the parameters

If you pass a parameter to a routine, use it. If you aren’t using it, remove the parameter 
from the routine interface.

Unused parameters are correlated with an increased error rate. In 
one study, 46 percent of routines with no unused variables had 
no errors, and only 17 to 29 percent of routines with more than 
one unreferenced variable had no errors (Card, Church, and Agresti1986).



How to Use Routine Parameters?
Put status or error variables last

By convention, status variables and variables that indicate an 
error has occurred go last in the parameter list. They are 

incidental to the main purpose of the routine, and they are 
output-only parameters, so it’s a sensible convention.



How to Use Routine Parameters?
Don’t use routine parameters as working variables

It’s dangerous to use the parameters passed to a routine as working variables. Use local 
variables instead.



How to Use Routine Parameters?
Document interface assumptions about parameters

If you assume the data being passed to your routine has certain characteristics, document the assumptions as 
you make them. Even better than commenting your assumptions, use assertions to put them into code

Whether parameters are 
input-only, modified, or 

output-only

Units of numeric 
parameters (inches, 

feet, meters, and so on)

Meanings of status codes and 
error values if enumerated 

types aren’t used

Ranges of expected 
values

Specific values that should 
never appear



How to Use Routine Parameters?
Limit the number of a routine’s parameters to about seven

Seven is a magic number for people’s comprehension

If you find yourself consistently passing more than a few arguments, the coupling 
among your routines is too tight. Design the routine or group of routines to reduce the 

coupling. If you are passing the same data to many different routines, group the 
routines into a class and treat the frequently used data as class data.



How to Use Routine Parameters?
Make sure actual parameters match formal parameters

Formal parameters, also known as “dummy parameters,” are the variables declared in a routine 
definition. Actual parameters are the variables, constants, or expressions used in the actual routine calls.

A common mistake is to put the wrong 
type of variable in a routine call



The most important reason for creating a routine is to improve the 
intellectual manageability of a program, and you can create a routine for 

many other good reasons. Saving space is a minor reason; improved 
readability, reliability, and modifiability are better reasons.

Sometimes the operation that most benefits from being put into a routine 
of its own is a simple one.

You can classify routines into various kinds of cohesion, but you can make 
most routines functionally cohesive, which is best.

The name of a routine is an indication of its quality. If the name is bad and 
it’s accurate, the routine might be poorly designed. If the name is bad and 

it’s inaccurate, it’s not telling you what the program does. Either way, a 
bad name means that the program needs to be changed.



Defensive Programming
The idea is based on defensive driving. In defensive driving, you adopt the mind-set that you’re never sure what 

the other drivers are going to do. That way, you make sure that if they do something dangerous you won’t be 
hurt. You take responsibility for protecting yourself even when it might be the other driver’s fault.



Defensive Programming

Part of the Interstate-90 floating bridge in Seattle sank during a storm 
because the flotation tanks were left uncovered, they filled with water, and 

the bridge became too heavy to float. During construction, protecting 
yourself against the small stuff matters more than you might think.



Defensive Programming



Defensive Programming



Protecting Your Program from Invalid Inputs
In school you might have heard the expression, “Garbage in, garbage out.” That expression is essentially 

software development’s version of caveat emptor: let the user beware.

For production software, garbage in, garbage out 
isn’t good enough. A good program never puts 

out garbage, regardless of what it takes in.

Check the values of all data 
from external sources

Check the values of all routine 
input parameters

Decide how to handle bad 
inputs



Assertions
An assertion is code that’s used during development—usually a routine or macro—that allows a 

program to check itself as it runs

When an assertion is true, that means everything is 
operating as expected. When it’s false, that means it has 

detected an unexpected error in the code.

Assertions are especially useful in large, complicated programs and in 
high-reliability programs. They enable programmers to more quickly 

flush out mismatched interface assumptions, errors that creep in 
when code is modified, and so on.



Assertions
An assertion is code that’s used during development—usually a routine or macro—that allows a 

program to check itself as it runs

An assertion usually takes two arguments: a Boolean expression that describes 
the assumption that’s supposed to be true, and a message to display if it isn’t.



Assertions
An assertion is code that’s used during development—usually a routine or macro—that allows a 

program to check itself as it runs

You use assertions primarily for debugging and identifying logic errors in an 
application. They are comment-like code

You must explicitly enable assertions when executing a program, because they 
reduce performance and are unnecessary for the program’s user.

Users should not encounter any Assertion Errors through normal execution of a 
properly written program. Such errors should only indicate bugs in the 

implementation. E.g., Debug mode vs. Release mode



Assertions
An assertion is code that’s used during development—usually a routine or macro—that allows a 

program to check itself as it runs

• That an input parameter’s value falls within its expected range (or an output 
parameter’s value does)

• That a file or stream is open (or closed) when a routine begins executing (or when it 
ends executing)

• That a file or stream is at the beginning (or end) when a routine begins executing (or 
when it ends executing)

• That a file or stream is open for read-only, write-only, or both read and write
• That the value of an input-only variable is not changed by a routine
• That a pointer is non-null
• That an array or other container passed into a routine can contain at least X number of 

data elements
• That a table has been initialized to contain real values
• That a container is empty (or full) when a routine begins executing (or when it finishes)
• That the results from a highly optimized, complicated routine match the results from a 

slower but clearly written routine



Assertions: Guidelines for Using Assertions
Use error-handling code for conditions you expect to occur; 

use assertions for conditions that should never occur

Assertions check for conditions that should never occur. Error-handling code 
checks for off-nominal circumstances that might not occur very often, but that 
have been anticipated by the programmer who wrote the code and that need 
to be handled by the production code. Error handling typically checks for bad 

input data; assertions check for bugs in the code.



Assertions: Guidelines for Using Assertions
Avoid putting executable code into assertions

Putting code into an assertion raises the possibility that the compiler will eliminate the code 
when you turn off the assertions.



Assertions: Guidelines for Using Assertions
Do not use assertions for argument checking in public 

methods
Argument checking is typically part of the published specifications (or contract) of a method, and 

these specifications must be obeyed whether assertions are enabled or disabled

Erroneous arguments should result in an appropriate 
runtime exception (such as IllegalArgumentException, 

IndexOutOfBoundsException, or NullPointerException)



Assertions: Guidelines for Using Assertions
Use Assertions for Internal Invariants

An invariant is a condition that can be relied upon to be true during execution of a program, or 
during some portion of it. It is a logical assertion that is held to always be true during a certain 

phase of execution. For example, a loop invariant is a condition that is true at the beginning and 
end of every execution of a loop.



Assertions: Guidelines for Using Assertions
Use Assertions for Internal Invariants

An invariant is a condition that can be relied upon to be true during execution of a program, or 
during some portion of it. It is a logical assertion that is held to always be true during a certain 

phase of execution. For example, a loop invariant is a condition that is true at the beginning and 
end of every execution of a loop.

Assumption: the suit variable will 
have one of only four values. To test 
this assumption, you should add the 
following default case:



Assertions: Guidelines for Using Assertions
Use Assertions for Control Flow Invariants
place an assertion at any location you assume will not be reached



Assertions: Guidelines for Using Assertions
Use assertions to document and verify preconditions and postconditions

Preconditions are the properties that the client 
code of a routine or class promises will be true 

before it calls the routine or instantiates the 
object. Preconditions are the client code’s 

obligations to the code it calls.

Postconditions are the properties that the 
routine or class promises will be true when it 
concludes executing. Postconditions are the 

routine’s or class’s obligations to the code that 
uses it.

If the variables latitude, longitude, and elevation 
were coming from an external source, invalid 
values should be checked and handled by error-
handling code rather than by assertions.



Assertions: Guidelines for Using Assertions
For highly robust code, assert and then handle the error anyway



Error-Handling Techniques
Return a neutral value

Sometimes the best response to bad data is to continue operating and simply 
return a value that’s known to be harmless.

• A numeric computation might return 0.
• A string operation might return an empty string, or a pointer operation might 

return an empty pointer.
• A drawing routine that gets a bad input value for color in a video game might 

use the default background or foreground color.



Error-Handling Techniques
Substitute the next piece of valid data

When processing a stream of data, some circumstances call for simply returning 
the next valid data.

If you’re reading records from a database 
and encounter a corrupted record, you 
might simply continue reading until you 
find a valid record.

If you’re taking readings from a 
thermometer 100 times per second and 
you don’t get a valid reading one time, you 
might simply wait another 1/100th of a 
second and take the next reading.



Error-Handling Techniques
Return the same answer as the previous time



Error-Handling Techniques
Substitute the closest legal value

In some cases, you might choose to return the closest legal value. This is often a 
reasonable approach when taking readings from a calibrated instrument

The thermometer might be calibrated 
between 0 and 100 degrees Celsius, for 
example. If you detect a reading less than 
0, you can substitute 0, which is the closest 
legal value.

Cars use this approach to error handling 
whenever going back. Since a 
speedometer doesn’t show negative 
speeds, when it simply shows a speed of 
0—the closest legal value.



Error-Handling Techniques
Log a warning message to a file

When bad data is detected, you might choose to log a warning message to a 
file and then continue on.

This approach can be used in conjunction 
with other techniques like substituting the 
closest legal value or substituting the next 
piece of valid data.

If you use a log, consider whether you can 
safely make it publicly available or whether 
you need to encrypt it or protect it some 
other way.



Error-Handling Techniques
Return an Error Code

You could decide that only certain parts of a system will handle errors. Other 
parts will not handle errors locally; they will simply report that an error has 

been detected and trust that some other routine higher up in the calling 
hierarchy will handle the error.

■ Set the value of a status variable
■ Return status as the function’s return value
■ Throw an exception by using the language’s built-in 
exception mechanism

Call an error-processing routine/object
Centralize error handling in a global error-handling routine or error-handling object.



Error-Handling Techniques
Display an error message wherever the error is encountered
This approach minimizes error-handling overhead; however, it does have the potential to spread 

user interface messages through the entire application-how to separate UI. Tight coupling

Beware of telling a potential attacker of the system 
too much. Attackers sometimes use error messages to 

discover how to attack a system.



Error-Handling Techniques
Shutdown

Some systems shut down whenever they detect an error.  This approach is useful 
in safety-critical applications.



Error-Handling Techniques: Correctness vs. Robustness

Correctness means never returning an inaccurate result; 
returning no result is better than returning an inaccurate result.

Robustness means always trying to do something that will allow 
the software to keep operating, even if that leads to results that 
are inaccurate sometimes.

Safety-critical applications tend to favor 
correctness to robustness. It is better to return no 

result than to return a wrong result. e.g. the 
radiation machine

Consumer applications tend to favor robustness 
to correctness. Any result whatsoever is usually 

better than the software shutting down.



Exceptions
An exception is an event, which occurs during the execution of a program, that 

disrupts the normal flow of the program's instructions.

If code in one routine encounters an unexpected condition that it doesn’t 
know how to handle, it throws an exception, essentially throwing up its 
hands and yelling, “I don’t know what to do about this—I sure hope 

somebody else knows how to handle it!”
Code that has no sense of the context of an error can return control to other parts of the system 
that might have a better ability to interpret the error and do something useful about it.



Exceptions
An exception is an event, which occurs during the execution of a program, that 

disrupts the normal flow of the program's instructions.



Exceptions

The benefit of exceptions is their ability to signal error conditions in such a way that they 
cannot be ignored (Meyers 1996)

Use exceptions to notify other parts of the program about 
errors that should not be ignored

Other approaches to handling errors create the possibility that 
an error condition can propagate through a code base 

undetected. Exceptions eliminate that possibility.



Exceptions

Exceptions should be reserved for conditions that are truly exceptional—in other words, for 
conditions that cannot be addressed by other coding practices

Throw an exception only for conditions that are truly 
exceptional

Exceptions represent a tradeoff between a powerful way to 
handle unexpected conditions on the one hand and increased 

complexity on the other.



Exceptions
Don’t use an exception to pass the buck

If an error condition can be handled locally, handle it locally. 
Don’t throw an uncaught exception in a section of code if you 

can handle the error locally.

The rules for how exceptions are processed become very complicated very quickly when 
exceptions are thrown in constructors and destructors.

Avoid throwing exceptions in constructors and destructors 
unless you catch them in the same place



Exceptions

A routine should present a consistent abstraction in its interface, and so should a class. The 
exceptions thrown are part of the routine interface, just like specific data types are.

Throw exceptions at the right level of abstraction



Exceptions

Be sure the message contains the information needed to understand why the exception was thrown.

Include in the exception message all information that led 
to the exception

If the exception was thrown because of an array index error, be 
sure the exception message includes the upper and lower array 

limits and the value of the illegal index.



Exceptions
Avoid empty catch blocks

Either the code within the try block is wrong because it raises an exception for no reason, or the 
code within the catch block is wrong because it doesn’t handle a valid exception.

Know the exceptions your library code throws
If you’re working in a language that doesn’t require a routine or class to define the exceptions 

it throws, be sure you know what exceptions are thrown by any library code you use.



Exceptions
Consider building a centralized exception reporter

Exceptions provide the means to separate the details of what to do when something out of the 
ordinary. Error detection, reporting, and handling often lead to confusing spaghetti code



Exceptions
Consider building a centralized exception reporter

Exceptions provide the means to separate the details of what to do when something out of the 
ordinary. Error detection, reporting, and handling often lead to confusing spaghetti code



Barricade Your Program to Contain the Damage Caused by Errors
Barricades are a damage-containment strategy. The reason is similar to that for having isolated compartments in 

the hull of a ship.



Debugging Aids
Don’t Automatically Apply Production Constraints to the Development Version

A common programmer blind spot is the assumption that limitations of the production software apply to 
the development version

Be willing to trade speed and resource usage during 
development in exchange for built-in tools that can make 

development go more smoothly.

Introduce Debugging Aids Early
The earlier you introduce debugging aids, the more they’ll help



Debugging Aids
Use Offensive Programming

Exceptional cases should be handled in a way that makes them obvious during development and 
recoverable when production code is running

• Make sure assert/abort the program. Don’t allow programmers to get into the habit of 
just hitting the Enter key to bypass a known problem. Make the problem painful enough 
that it will be fixed.

• Completely fill any memory allocated so that you can detect memory allocation errors.
• Completely fill any files or streams allocated to flush out any file-format errors.
• Be sure the code in each case statement’s default or else clause fails hard (aborts the 

program) or is otherwise impossible to overlook.
• Fill an object with junk data just before it’s deleted.
• Set up the program to e-mail error log files to yourself so that you can see the kinds of 

errors that are occurring in the released software, if that’s appropriate for the kind of 
software you’re developing.



Debugging Aids
Plan to Remove Debugging Aids

If you’re writing code for your own use, it might be fine to leave all the debugging code in the program. 
If you’re writing code for commercial use, the performance penalty in size and speed can be prohibitive.

Use version-control tools and 
build tools like ant and make

Use a built-in 
preprocessor

Write your own 
preprocessor Use debugging stubs



Determining How Much Defensive Programming to
Leave in Production Code

Leave in code that checks 
for important errors

Leave in code that helps the 
program crash gracefully

Log errors for your 
technical support personnel

Make sure that error messages 
you leave in are friendly



Being Defensive About Defensive Programming

Think about where you need to be defensive, and set 
your defensive programming priorities accordingly



Production code should handle errors in a more sophisticated way than “garbage in, garbage out.”

Defensive-programming techniques make errors easier to find, easier to fix, and less damaging to 
production code.

Assertions can help detect errors early, especially in large systems, high-reliability systems, and fast-
changing code bases.

The decision about how to handle bad inputs is a key error-handling decision and a key high-level 
design decision.

Exceptions provide a means of handling errors that operates in a different dimension from the 
normal flow of the code. They are a valuable addition to the programmer’s intellectual toolbox when 

used with care, and they should be weighed against other error-processing techniques

Constraints that apply to the production system do not necessarily apply to the development 
version. You can use that to your advantage, adding code to the development version that helps to 

flush out errors quickly.




