SWEN 6301 Software Construction
Module 5: Software Construction

Ahmed Tamrawi

Copyright notice: 1- care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.
2- many slides are adopted with permission from lan Sommerville and Mustafa Misir ‘s lecture notes on Software Engineering course and Modern Software Development Technology course.

Be the first to CRACK this code to claim a prize!

https://gist.github.com/atamrawi/be5f2c23641f
00c2cbad1f0b6cbe7162

https://gist.github.com/atamrawi/be5f2c23641f00c2cba41f0b6c6e7f62

Software Construction

SWEN 6301 Software
Construction Definition

Software construction is the process of creating and
evolving software source code that results on extensible,
maintainable, robust, and secure software

What Is Software Construction?

Construction Activities
= :
Detailed S
Design) (“‘"“J/

/\/\

Codine and) L Coding implies the mechanical translation of a
}Commmon & Mg preexisting design into a computer language;

Planning { Debugging construction is not at all mechanical and
s involves substantial creativity and judgment.

, Integration)

Software) m :
) | Testing JR(o
\f__) (Tesang)
——

Construction focuses on coding and debugging but also includes
detailed design, unit testing, integration testing, and other activities.

Detailed ~—
/ P
_ | Design) '
—_—

)

.’/ A S —

}IIH!’:ZZM!"HJ

Coding and
(onstruction . ,',___/k___\/

) Planning ;)Dchuggingj
=i o N ——t®) _—

Integration)

o f lesting
Unit / —
| Testing

o

High-level View of Construction Activities

Verifying that the groundwork has been laid so that
construction can proceed successfully

Determining how your code will be tested
Designing and writing classes and routines
Creating and naming variables and named constants

Selecting control structures and organizing blocks of
statements

Unit testing, integration testing, and debugging your
own code

Reviewing other team members’ low-level designs and
code and having them review yours

Polishing code by carefully formatting and commenting
it

Integrating software components that were created
separately

Tuning code to make it faster and use fewer resources

Specific Tasks of Construction Activities

Why is Software Construction Important?

)
Construction is a large ®
part of software Construction’s product, the source
development code, is often the only accurate
¢ description of the software
Construction is the central
activity in software development >

Construction is the only activity
that’s guaranteed to be done

O
With a focus on construction, the

individual programmer’s productivity
can improve enormously

SUMMAR\

Software construction is the central activity in software
development; construction is the only activity that’s guaranteed to
happen on every project.

The main activities in construction are detailed design, coding,
debugging, integration, and developer testing (unit testing and
integration testing).

Other common terms for construction are “coding” and
“programming.”

The quality of the construction substantially affects the quality of
the software.

Your understanding of how to do construction determines how
good a programmer you are.

Construction

Software is usually designed and created (coded/written/programmed) in integrated development
environments (IDE) like Eclipse, Xcode or Microsoft Visual Studio that can simplify the process and
compile the program to an executable unit.

Future Improvements

Deployment

Testing

Construction

Architecture

Requirements

Problem Definition

Key Construction Decisions

Choice of Programming Proerammine Conventions Your Location on the Selection of Major
Language 8 8 Technology Wave Construction Practices

Choice of Programming Language

Studies have shown that the programming-
language choice affects productivity and code
quality in several ways

Programmers are more productive using a
familiar language than an unfamiliar one

Programmers working with high-level languages
achieve better productivity and quality than
those working with lower-level languages.

Human languages

E.g., English, French, Spanish,
Chinese, German, Arabic etc.

High level

programming i U E.g., Python, Java, C++
language for (i = 1; i <= 10; i++)
Low level

programming R S Assembly

language MOV #10, RO

Machine language e Binary

10100000 1010 00

Computer hardware

High
level

Low
level

Choice of Programming Language

Ratio of High-Level-Language Statements to Equivalent C Code

Language Level Relative to C
C 1

C++ 2.5

Fortran 95 2

Java 25

Perl 6

Python 6

Smalltalk 6

Microsoft Visual Basic 4.5

Source: Adapted from Estimating Software Costs (Jones 1998), Software Cost Estimation with Cocomo |l
(Boehm 2000), and “An Empirical Comparison of Seven Programming Languages” (Prechelt 2000).

Job postings containing top languages

T X

PO o <ok

JavaScript

CH —

C — -7«

PHP oy 1ax

Perl — e

[38K

@) 2018 jobs

2017 jobs

Choice of Programming Language

Kind of Program

Best Languages

Worst Languages

Command-line

Cobol, Fortran, SQL

processing

Cross-platform
development

Java, Perl, Python

Assembler, C#, Visual Basic

Database manipulation

SQL, Visual Basic

Assembler, C

Direct memory

Assembler, C, C++

C#, Java, Visual Basic

manipulation
Distributed system C#, Java -
Dynamic memory use C, C++, Java .

Easy-to-maintain
program

C++, Java, Visual Basic

Assembler, Perl

Fast execution

Assembler, C, C++,
Visual Basic

JavaScript, Perl, Python

For environments with
limited memory

Assembler, C

C#, Java, Visual Basic

Mathematical Fortran Assembler
calculation
Quick-and-dirty project | Perl, PHP, Python, Assembler

Visual Basic

Real-time program

C, C++, Assembler

C#, Java, Python, Perl, Visual
Basic

Report writing Cobol, Perl, Visual Assembler, Java
Basic

Secure program C#, Java C, C++

String manipulation Perl, Python C

Web development

C#, Java, JavaScript,
PHP, Visual Basic

Assembler, C

Some languages simply don 't support certain kinds of programs, and those have not

been listed as “worst” laneuacges. For example. Perl is not listed as a “worst
language” for mathematical calculations.

NOVICE PROGRAMMER

I CAN'T
BELIEVE IT
WORKED
FIRST TIME!

2

EXPERIENCED PROGRAMMER

I CAN'T
BELIEVE IT
WORKED
FIRST TIME...

2

s con

Just like half of the world's spoken tongues, most of the 2,300-plus computer Code-raker Grady Booch, Rational Software's chief scientist, is working with the Computer Key
o e r programming languages are either endangered or extinct. As powerhouses C/C++, History Musuem in Silicon Valley to record and, in some cases, maintain languages by writing 1954 Yearintroduced
Visual Basic, Cobol, Java and other modern codes domi our sy 5 new compilers so our ever-changing hardware can grok the code. Why bother? “They tell kG- SoiRarie o Usare
hundreds of older languages are running out of life. us about the state of software practice, the minds of their inventors, and the technical, social, Protectad: taught at inivecsiias: complens
An ad hoc collection of engi lectronic | graphers, if you will-aim to and economic forces that shaped history at the time,” Booch explains. “They'll provide the available
save, or at least document the lingo of classic software. They're combing the globe’s raw material for software archaeologists, historians, and developers to learn what worked, Endangered: usage dropping off
9 million developers in search of coders still fluent in these nearly forgotten lingua what was brilliant, and what was an utter failure.” Here's a peek at the strongest branches Extinct: 00 known active users or up-lo-date
Tracin g the roots of com puter frangas. A g the most endangered are Ada, APL, B (the predecessor of C), Lsp, of programming's family tree. For a nearly exhaustive rundown, check out the Language List compilers
Oberon, Smalitalk, and Simula. at HTTP://www.informatik.uni-freiburg.de/Java/misc/lang_list.html. - Michael Mendeno Lineage continues
languages through the ages
1954 1955 1955 1057 1958 1050 1960 1961 1962 1963 1964 1985 1966 1067 1968 1963 1970 4971 1972 1973 1974 4915 1976 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1088 | 1989 | 1900 1991 1962 1993 1994 1695 1006 1907 1908 1990 2000 2001
Created for the IBM 7090134
m"w Flow-Magic Cobol Cobol 61
used langusges A [designed ALisp offshoot that's
in science and nally B,
Bt g o, IR .':f,..m.....m,.. ol o Schune 84 T D15 Schame RERS o
o St e s et [l et
Oriented Language. Lo combine the best
Cob anc g 0 7 Common Litp
' 7 /Z . ?‘ GbjctSysen.
: v - N "ANS| Common Lisp 23
Pessibly the first Wa%%mw ANSIPLY 3 3
Poplar Wi Al fesearhers. A portble ngeage b SRt h .
PhO thesis. oo s e g oF ot Lo
doomed, depending évl whom yoqu ask 4
[Rex 18 Rex 200,
e X
lay luu::ﬂhln' 5%:”‘5‘&::‘.?\‘:;:9;1:'::; g :.k“p.:'“p:'sr mﬂmmzm
at now-standard concept of Simula m m e
morg portable. Initially called object-oriented, rather than en s m
mcedoml, rogianning for natural- w&ma than them by
2nc Dielonan Doy o Popuarfo Al programs. O i
croated fo foach igid
engineering skills.
Survival of the Fittest
Reasons a language endures, with examples of some classic tongues %“
in
Appeals to a wide audience C (bolstered by the popularity of Unix) /
Gets a job done Cobol (designed for business-report writing) l \
Delivers new functionality Java (runs on any hardware platform) Iy
ey , o o The US nt of Defense's effort to crat a standard object-oriented
Fills a niche {sp up comp P 1s) language for its work, Named afier Ada Loveisce, arguably the world's first
i 5) Used primarily computer programmer, and created by Jean ichbish’s team of Honeywell. 2
Offers a modicum of elegance lcon (has friendly, line-criented syntax) for norvnumeric
programming - -
Has a powerful user base or backer C# (developed by Microsoft for .Net) w’. \ / ‘ ‘_1, Object Pascal \ h L m
Has a charismatic leader Perl (programmer-author Larry Wall) — =
The swiss Army Knife of (s k3 Practical Extraction and
Mhn.wﬁ.udﬁ : o difrent ioguiges.
ol e doscangant o [sn — - Ksh g
Sacbol, thete's o need 10 o . C-Shell,a tanguage and o 2 or Un
know the underying OS. ru-m 'w.cm nnm %::"; n"; b Frame-based
(T — SHLOT g
Icon Page-description for| and
":5_, m M':l all commercial Cam! Caml 2-6.1 Objective Caml _ O Cami 2 0 Cami 3.00
SR P
APL 96
Microsoft Basic

Sources: Paul Boutin; Brent Hailpern,

of comp

oo R o g

Microsoht Visual tool

science at IBM Research; The Retrocomputing Museum; Todd Proebsting, senior researcher at Microsoft; Gio Wiederhold, computer scientist, Stanford University

Programming Conventions

In high-quality software, you can see a relationship between the conceptual integrity
of the architecture and its low-level implementation.

That’s the point of construction guidelines for variable names, class names, routine names, formatting conventions, and
commenting conventions.

Without a unifying discipline, your creation will
be a jumble of sloppy variations in style. Such checksty e
variations tax your brain—and only for the S
sake of understanding coding-style differences
that are essentially arbitrary.

http://checkstyle.sourceforge.net/ http://checkstyle.org/eclipse-cs/

Before construction begins, spell out the programming conventions you’ll use. Coding convention details
are at such a level of precision that they’re nearly impossible to retrofit into software after it’s written.

Programming into a Language

Programmers who program “in” a language limit their Programmers who program “into” a language first
thoughts to constructs that the language directly decide what thoughts they want to express, and then
supports. If the language tools are primitive, the they determine how to express those thoughts using

programmer’s thoughts will also be primitive. the tools provided by their specific language.

Selection of Major Construction Practices

Checklist: Major Construction Practices
Coding
Q Have you defined how much design will be done up front and how much
will be done at the keyboard, while the code is being written?

Q Have you defined coding conventions for names, comments, and layout?

Q Have you defined specific coding practices that are implied by the architec-
ture, such as how error conditions will be handled, how security will be
addressed, what conventions will be used for class interfaces, what stan-
dards will apply to reused code, how much to consider performance while
coding, and so on?

Q0 Have you identified your location on the technology wave and adjusted
your approach to match? If necessary, have you identified how you will
program into the language rather than being limited by programming in it?

Teamwork
Q Have you defined an integration procedure—that is, have you defined the
specific steps a programmer must go through before checking code into
the master sources?

Q Will programmers program in pairs, or individually, or some combination
of the two?

Quality Assurance

Q

Will programmers write test cases for their code before writing the code
itself?

Will programmers write unit tests for their code regardless of whether
they write them first or last?

Will programmers step through their code in the debugger before they
check it in?

Will programmers integration-test their code before they check it in?

0 Will programmers review or inspect each other’s code?

Tools

Q
a

Q

Have you selected a revision control tool?
Have you selected a language and language version or compiler version?

Have you selected a framework such as J2EE or Microsoft .NET or explic-
itly decided not to use a framework?

Have you decided whether to allow use of nonstandard language features?

Have you identified and acquired other tools you'll be using—editor, refac-
toring tool, debugger, test framework, syntax checker, and so on?

SUMMAR

Every programming language has strengths and weaknesses. Be aware of
the specific strengths and weaknesses of the language you’re using.

Establish programming conventions before you begin programming. It’s
nearly impossible to change code to match them later.

More construction practices exist than you can use on any single project.
Consciously choose the practices that are best suited to your project.

Ask yourself whether the programming practices you’re using are a
response to the programming language you’re using or controlled by it.
Remember to program into the language, rather than programming in it.

Your position on the technology wave determines what approaches will be
effective— or even possible. Identify where you are on the technology
wave, and adjust your plans and expectations accordingly

a very complicated task

Creating High-Quality Code

Design in Construction Working Classes High Quality Routines Defensive Programming

Design in Construction

Software Design

The conception, invention, or contrivance of a scheme for turning a specification for computer software into
operational software. Its the activity that links requirements to coding and debugging

g
D TO KN FIRST OF ALL, - I
Y&hT\EEEQUIF?EME%{#S 2 WHAT ARE YOU AR R : IQEUA%&:?Q;{ ?gE
BEFORE I START TO ||z TRYING TO Mﬂ‘f ;’3&4&,‘:&8’“ | | ACCOMPLISH WITH
DESIGN THE SOFTWARE | ACCOMPLISH? : g THE SOFTWARE?
f = 1/ \\ .
W % - S| -
: | €9 : A good top-level design
g i L 2
- /5 '__'_]
|l) . provides a structure that can
WON'T KNOW WHAT
: TRY TO GET THIS safely contain multiple
I CAN ACCOMPLISH CONCEPT THROUGH YOUR CAN YOU DESIGN
UNTIL YOU TELL ME THICK SKULL: THE IT TO TELL YOU :
WHAT THE SOFTLARE SOFTWARE CAN DO 5| LMY REQUIREMENTS? lower-level designs
CAN DO. WHATEVER T DESIGN - '
IT 70 DO! § \\

Design Challenges: Design is a Wicked Problem

Dictionary

Enter a word, e.g. 'pie’

wicked
['wikid/ ©
adjective

1. evil or morally wrong.
"a wicked and unscrupulous politician"

synonyms: evil, sinful, immoral, wrong, morally wrong, wrongful, bad, iniquitous, corrupt, black-
hearted, ungodly, unholy, irreligious, unrighteous, sacrilegious, profane,
blasphemous, impious, base, mean, vile; More

2. playfully mischievous.
"a wicked sense of humour”

synonyms: mischievous, playful, naughty, impish, roguish, arch, rascally, rakish, puckish,
waggish, devilish, tricksy, cheeky, raffish, teasing

"a wicked sense of humour”

3. A wicked problem is a problem that could be clearly defined only by solving it,

or by solving part of it.

THE :
{ LUE pUTION

s TRUE

Horst Rittel and Melvin Webber 1973

N

WICKED PRQBLEMé 9(V%F§@ w*‘“”.”

BEOUJN Dﬁlfiberﬂe!u um'defu\oem}e

& @ meditnton o meHoA% g prike mé b
aJ/fV.)S” = '6)(
LEXRNINGT | 57D i ' e comethii L

INTATVE Jare pally b g sk

why dl SMET 7 Coli0e 2 N o 2 e LEADERSHIP i's ke

h eomsfranf—we do unf— B | v el o ENCOVRAGING, CRERIMT!
e knowo —WIRTS | TRebown y ¥ CrERTIE K
FFFCI‘EIUO(—?IYJ ?D% \des <t hwsd C«/%: < . Which /mfme; /.géE;Z e

THE
ED BUTTON
IS FALSE

The paradox implies that you have to solve the problem
once in order to clearly define it and then solve it again to

create a solution that works.

Design Challenges: Design Is a Wicked Problem

i

TOTAL
COLLAPSE!

The event is presented as an example of elementary forced resonance, with the wind providing
an external periodic frequency that matched the natural structural frequency, even though the
real cause of the bridge's failure was aeroelastic flutter, not resonance. A contributing factor
was its solid sides, not allowing wind to pass through the bridge's deck. Thus, its design allowed
the bridge to catch the wind and sway, which ultimately took it down.

The Tacoma Narrows bridge—an example of a wicked problem

Only by building the bridge (solving
the problem) could they learn about
the additional consideration in the
problem that allowed them to build
another bridge that still stands.

Until the bridge collapsed, its
engineers didn't know that
aerodynamics needed to be

considered to such an extent.

Design Challenges: Design Is a Sloppy Process

The finished software design should look well organized and clean, but the
process used to develop the design isn’t nearly as tidy as the end result.

Design is the most
Sosa immediate, the most

EXC] explicit way of defining

Jonathan I've

lea Industrial Design- Apple Computers

Design Challenges: Design Is About Tradeoffs and Priorities

A key part of the designer’s job is
to weigh competing design
characteristics and strike a

balance among those
characteristics

Design Challenges: Design Involves Restrictions

The point of design is partly to create possibilities and partly to restrict
possibilities

The constraints of limited resources for constructing buildings force simplifications of the solution
that ultimately improve the solution.

Design Challenges: Design Is Nondeterministic

Design Challenges: Design Is a Heuristic Process ERROR

Because design is nondeterministic, design techniques tend to be heuristics— “rules of
thumb” or “things to try that sometimes work”—rather than repeatable processes that are
guaranteed to produce predictable results

Design Challenges: Design Is Emergent

Key Design Concepts

Managing Complexity Desirable Characteristics Levels of Design

Managing Complexity

Accidental and Essential Difficulties

Software development is made difficult
because of two different classes of problems:
the essential and the accidental

Fred Brooks’s landmark paper, “No Silver Bullets:
Essence and Accidents of Software Engineering” (1987).

The properties a thing happens
to have and don’t really bear on
whether the thing is what it is

The properties that a thing must
have in order to be that thing

Managing Complexity

Importance of Managing Complexity

The only profession in which a single mind is
obliged to span the distance from a bit to a few
hundred megabytes, a ratio of 1 to 10°?, or nine
orders of magnitude (pijkstra 1989)

No one’s skull is really big
enough to contain a modern
computer program (Dijkstra 1972)

The goal is to minimize the amount of a program you have to
think about at any one time.

Dividing the system Break a complicated More independent Keeping routines
into subsystems problem into simple pieces the subsystems short

Managing Complexity

How to Attack Complexity

Minimize the amount of essential complexity that
anyone’s brain has to deal with at any one time

Keep accidental complexity from needlessly
proliferating

Desirable Characteristics of a Design

(4

PR

Extensibility Reusability Portability

less co-ordinafy gun
h ; m g .

Less infurmation Aeu, M:"; ‘,c°'°’¢l'zqﬁ$;

Mor mahion oy,

OATA — STAMP - €0 ITRSLL = CopMMoN - comrenT

High Fan-In Low-to-Medium Fan-Out

Loose Coupling

'SITANDARD S|

oo coo

Stratification Standard Techniques

Levels of Design

Design is needed at several different levels
of detail in a software system. Some design
techniques apply at all levels, and some
apply at only one or two.

Software system c

\—/

Division mto 9 [:]
subsystems/ packages G D

Division into classes e ﬁ B
within packages X{]
—:@_>

—
e . i]
Division imnto data and e - %l:l

routines within classes lj%lj

Internal routine design @

The levels of design in a program. The system (1) is first organized into subsystems
2). The subsystems are further divided into classes (3), and the classes are divided

into routines and data (4). The inside of each routine is also designed (5).

Levels of Design

Software system c

\—/

Division mnto e C]
subsystems/ packages @ D

Division into classes e j;] B

within packages

_>

L]
L1

wn %]
Division imnto data and —
O C

routines within classes Ij%t'

Internal routine design @

The levels of design in a program. The system (1) is first organized into subsystems
2). The subsystems are further divided into classes (3), and the classes are divided

into routines and data (4). The inside of each routine is also designed (35).

—€ Software System
The first level is the entire system. Some programmers

jump right from the system level into designing classes,
but it’s usually beneficial to think through higher level
combinations of classes, such as subsystems or packages.

Levels of Design

Software system c

)
Division into Subsystems or Packages
\ J The major design activity at this level is deciding how to

(@) partition the program into major subsystems and defining
Diyision 6l gy C] how each subsystem is allowed to use each other subsystem.
subsystems/)ackages
' : D D Within each subsystem, different methods of design might be used—choosing the approach

K—J that best fits each part of the system.

T
Division mnto classes o @ B

within packages (‘ User interface
'_;‘Q_:‘gj May use several subordinate subsystems or Business Rules
classes for the GUI interface, command line the laws, regulations, policies,
== interface, menu operations, window and procedures that you encode
o — T management, help system, and so forth I into a computer system
Division mto data and e - %:l ‘
routines within classes — lj%[j C O m m O n

System dependencies

S u bsyste m S If you're developing a program for
Tntesinl fortinedesion @ Microsoft Windows, why limit yourself to
e —— the Windows environment? Isolate the
Database Access i : : :
centralize database operations in Windows calls in a Windows-interface
iz i i
The levels of design in a program. The system (1) is first organized into subsystems one place and reduce the chance subsystem. If you later \fvant to move your
. . ") ,) o) -) program to Mac OS or Linux, all you'll have
(2). The subsystems are further divided into classes (3), and the classes are divided of errors in working with the data.))
to change is the interface subsystem

into routines and data (4). The inside of each routine is also designed (5).

Levels of Design

O)

Software system c e o o .
' Division into Subsystems or Packages

\ J The major design activity at this level is deciding how to
/Q) partition the program into major subsystems and defining

Division into C] how each subsystem is allowed to use each other subsystem.

subs_\'stems / packages D
D Within each subsystem, different methods of design might be used—choosing the approach

\ W that best fits each part of the system.

e

-

IMPORTANT RULE How the various subsystems can communicate?

Division into classes o

within packages

5]

'\;‘@J» If all subsystems can communicate with all other subsystems, you lose
the benefit of separating them at all.
== Make each subsystem meaningful by restricting communications.

g0

Division into data and e

routines within classes

(B (
User Interface] [Graphics] [User Interface]‘—'{ Graphics]

(8ot

-4l ¢ 1 " e / cati = Application
Internal routine design e [Data Storage] [Applicaion] [Data Storage] [o s

Level Classes

The levels of design in a program. The system (1) is first organized into subsystems
2). The subsystems are further divided into classes (3), and the classes are divided L

into routines and data (4). The inside of each routine is also designed (35).

[L’ser lmerlﬁcc] [Graphics]
[Data Storage] [

Application
Level Classes

Business Enterprise-Level
Rules Tools

l

N

Levels of Design

i : Application
Data Storage Pl S
: Level Classes

//\L

Business Lmupnsa Level
Rules Tools

/

\

[Data Storage]<—>[

Application

Level Classes]

_ | Enterprise-Level
Tools

Business
Rules

Suppose for example that you define a system
with six subsystems

* How many different parts of the system does a
developer need to understand at least a little bit
to change something in the graphics subsystem?

* What happens when you try to use the business
rules in another system?

* What happens when you want to put a new user
interface on the system, perhaps a command-line
Ul for test purposes?

* What happens when you want to put data
storage on a remote machine?

Allow communication between subsystems only
on a “need to know” basis—and it had better be
a good reason.

If in doubt, it’s easier to restrict communication
early and relax it later than it is to relax it early
and then try to tighten it up after you’ve coded
several hundred inter-subsystem calls.

The simplest relationship is to have one
subsystem call routines in another.

A more involved relationship is to have one
subsystem contain classes from another.

The most involved relationship is to have classes
in one subsystem inherit from classes in another

Levels of Design

O)

Software system c

Division into Classes within Packages
\ J Design at this level includes identifying all classes in the

/[:E system.
=8

e ey)
Division into classes e e ' Lers EECA' P. ot
) ‘.'l 8

Division mto e
subsystems/ packages

within packages .
“@ Object

Oriented

[:]:II:I
Fa

)

Division into data and e

routines within classes

Internal routine design @

The levels of design in a program. The system (1) is first organized into subsystems
(2). The subsystems are further divided into classes (3), and the classes are divided
into routines and data (4). The inside of each routine is also designed (35).

LETS KECAP..
Object
Oriented
Programming

Person

-name:String
-address:String

+Person(name:String,address:String)

+getName() :String
+getAddress():String
| ... "name(address)" |
/\
[|
Student Teacher
-numCourses:int = @ -numCourses:int = 0@
-courses:String[] = {} -courses:String[] = {}
-grades:int[] =
ggades:zintl) sosl) +Teacher(name:String,
+Student (name:String, address:String)
address:String) +toString():String
+toString():String +addCourse(course:String) :boolean ®---- i
+addCourseGrade(course:String, eCours urse : ea 4

grade:int):void
+printGrades():void

x

"Student: name(address)"

{ .

Return false if the course already existed

Return false if the course does not exist

{ -

~——

n-T“Teacher: name (address)" |

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Language Rank

5
8

sEctrum Ranking

2. Java
3. Python

S
X

6. C#

7. PHP

8. JavaScript
9. Ruby

10. Go

11. Arduino

12. Matlab

13. Assembly
14. Swift

15. HTML

16. Scala

17. Perl

18. Visual Basic
19. Shell

20. Objective-C

]

@SS BEHSe &S
ca O =1 =] (=1 =1
O i o 4] o4 | 4]
© = L

0 ol

0

https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016

; LETS KECAP..
“ Object

(1o Oriented
%‘1‘4 % Programming

:‘.“.,_J',.;M
=

-l i
R 7 1
Circle] Square ﬂ Triangl ' Sphere i Cub: n Tetrahedro ﬂ

Polymorphism

Shape

draw()
Triangle Rectangle Circle
draw() draw() draw()

Encapsulation

OOP Key
Technologies

Abstraction

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Objects

QVG—
el
« 5%

#

| Ll A class is the static thing you look at in the program listing while

(1 ?, Oriented

L ceeeitne an object (instantiation of a class) is any specific entity that
= exists in your program at run time.

Book Class Instances of “Book” Class (Objects)
Book
ey K> L[author
-price:double -name:Strin £
'zty:int -e:'lail?;trl‘iﬁg [e = Clean COde

°
-gender:char R - A Handbook of Agile Software Craftsmanship Effectlve Java

Third Edition

+Book(name:String, author:Author,
price:double, gty:int)
+getName() :String
+getAuthor() :Author
+getPrice():double
+setPrice(price:double):void
+getQty():int
+setQty(qgty:int):void
+toString():String *

"'book-name' by author-name (gender) at email"

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

OoooNOOUTEAWNPRE

d LETS PechP..

Object

%' Oriented

Programming

~ -
-

e

| —

class Bike {

int cadence = 0;
int speed = 0;

int gear = 1;

void changeCadence(int newValue) {
this.cadence = newValue;
b

void changeGear(int newValue) {
this.gear = newValue;

}

void speedUp(int increment) {
this.speed += increment;

}

void applyBrakes(int decrement) {

this.speed —= decrement;

}

void printStates() {
System.out.printin(
""cadence: " + this.cadence
+ " speed: " + this.speed
+ " gear: " + this.gear

Real-world objects share two characteristics

State attribute/field Behavior method/function

/

/ Chang;\

gears

currentSpeed = 18

currentCadence = 90

/

l‘, | A O \ me "IT = Gea S = 2;
Bl'al : ¥ _ === te‘cl f
—._______ — _‘-~.__\‘ l| |. D O ’| : r emGear =
il Cllange ‘_ \ _,_—_———4——; curr =2

= /
/\/ gears /\ Change
— cadence
/ & T

> =

f / A O 0\ numberOfGears = 27 —_
| | ﬁ/r/‘r’—

Brake | .
\ '--\E] o0 ,.' My Bike
I'g..\ \.____ -___./' \\ ’.“."
\, Change / e N
\(\ cadence />/ / Change currentSpeed = 18
"~ - ears
Nz, A / g__\ currentCadence = 90
{ o "' n . -
. |] __.-t--numberOfGears = 27
Bike Class (Brake | A {?"Q","— | =
' \ @ o+— currentGear = 2
|II O /
- /
Change
cadence
\\\“;g/
Foo Bike

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

d LETS PechP..

p Object
B Oriented . I8 class Bike { I8 class BikeDemo {

i ﬁ?gfn"?Tg 2 int cadence = 0; 2

S e 3 int speed = 0; 3 public static void main(String[] args) {
4 int gear = 1; 4
6 void changeCadence(int newValue) { 6 Bike bikel = new Bike();
7 this.cadence = newValue; 7 Bike bike2 = new Bike();
8 } 8
9 9
10 void changeGear(int newValue) { 10 bikel.changeCadence(50);
11 this.gear = newValue; 11 bikel.speedUp(10);
12 } 12 bikel.changeGear(2);
13 13 bikel.printStates();
14 void speedUp(int increment) { 14
15 this.speed += increment; 15
16 } 16 bike2.changeCadence(50);
17 17 bike2.speedUp(10);
18 void applyBrakes(int decrement) { 18 bike2.changeGear(2);
19 this.speed —-= decrement; 19 bike2.changeCadence(40);
20 } 20 bike2.speedUp(10);
21 21 bike2.changeGear(3);
22 void printStates() { 22 bike2.printStates();
23 System.out.printin(23
24 "cadence: " + this.cadence 24 s
25 + " speed: " + this.speed
26 + " gear: " + this.gear
. BikeDemo. java
29 s

Bike.java What is the output?

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

LETS KECAP..
Object
Oriented
Programming

Encapsulation

The process of wrapping code and data
together into a single unit

Data/Information Hiding

The variables of a class will be hidden from other classes, and can
be accessed only through the methods of their current class

‘ Different class Different package Unrelated class Different module
| but same package | but subclass but same module | and p1 not exported
‘ 3 Modifier Class Package Subclass World
package pil; | package pl; package p2; package p2; ;package X; public Y Y Y Y
class A { | class B { class C extends A { | class D { | class E {
private int i; | i protected Y Y X X
int j; i
protected int k; | i no modifier Y : X X
public int 1; : !
I i} } b) private Y X X X
Accessible Inaccessible

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

‘ LETS KECAP.. .
;:Qgﬂjfﬁed Inheritance

Programming

o Different kinds of objects often have a certain amount in
eSS common with each other
—
/ Super Class
Object-oriented programming allows (N €&
. . (Hal™
classes to inherit commonly used \L

state and behavior from other classes
and let you focus on the features that
make a specific class unique | |

:@r FULL TIME | k
ONLY * * B

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

7]
S e

Mountain Bike Road Bike Tandem Bike

ONLY

MountainBike Bicycle { TandemBike Bicycle {

b

RoadBike Bicycle {

it e Interfaces

s Oriented) . .) .)
Programming Define class instances interaction with the outside world through the methods that they expose
O L"3%¢*~'

C—
I8l interface Bicycle {
2
3 void changeCadence(int newValue);
4
5 void changeGear(int newValue);
6
7 void speedUp(int increment); . .
8 Implementing an interface allows a
9 void applyBrakes(int decrement); [O &
10 I o 9, class to become more formal about the
11 id intStat H = . . . c
11 8 void printStates() \\.& behavior it promises to provide.

Bicycle

Interfaces form a contract between the class |
and the outside world, and this contract is
enforced at build time by the compiler.

If a class claims to implement an interface, all methods | ™
defined by that interface must appear in its source code. _J \\ -

f [@
: | o B
e | \
_\

Mountain Bike Road Bike Tandem Bike }' v

class TandemBike implements Bicycle {

class MountainBike implements Bicycle {

b

class RoadBike implements Bicycle {

}.“

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Tl Interfaces

y "% Oriented

Programming Define class instances interaction with the outside world through the methods that they expose

v ~ -
- ’ -

S

C—

Signing into Facebook and not talking to anyone
Just stare at peoples statuses like

something is
wrong with
these people

public interface SomethingIsWrong {

void foo(int value) {

}

System.out.println("Something is wrong!");

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

L L6TS KECAP..
Object
y "% Oriented
' Programming

Abstract Classes/Methods

o = An abstract class is a class that is declared abstract and cannot be instantiated but can be sub-

-

C—

class Rectangle extends GraphicObject {

void draw() {
}
void resize() {

b
by

classed. An abstract method is a method that is declared without an implementation

abstract class GraphicObject {
int x, vy;

void moveTo(int newX, int newY) {

}

abstract void draw();
abstract void resize();

GraphicObject
I class Circle extends GraphicObject {
1 N : id d
Rectangle Line Bezier Circle void draw() {

b

void resize() {

b
by

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

LETS KECAP.. .
Abstraction

p Object
(1 f; Oriented
4
The process of hiding the implementation details from the user, only the functionality will be provided to

Programming

the user. In other words, user will have the information on what the object does instead of how it does it

R In Java, Abstraction is achieved using
abstract classes, and interfaces

Application

Application
Programmer

Utility
Programmer efé)v

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

LETS KECAP..

Programming

' e Polymorphism

i‘" ks > The ability of an object to take on many forms
ENET o afatd
‘;‘i-.. =
Employee
i-empCode: int
Shape i-firstName: String
draw() \-lastName: String
‘+pay(): double
Triangle Rectangle Circle
draw() draw() draw()

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

HourlyEmployee SalariedEmployee

i-=rate: double
i-workingHours: double |

‘-commisionRate: double '
=grossSales: double

+pay(): double '=basic: double

+pay(): double

LETS KECAP..
Object
Oriented
% Programming

'~ Lovcomany |

——[classes I '——[myprojectl
[} 4
|
I

—I MyClass.java

-2 mycompany

i

I
I— myproject

i

I
'—-I MyClass.class

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Packages

= Namespaces that organize a set of related classes and interfaces

List

ArrayList

[

LinkedList

Vector

PriorityQueue

Deque

ArrayDeque

LinkedHashSet
SortedSet
?

.

; LETS KECAP..
“ Object

(1o Oriented
%‘1‘4 % Programming

:‘.“.,_J',.;M
=

-l i
R 7 1
Circle] Square ﬂ Triangl ' Sphere i Cub: n Tetrahedro ﬂ

Polymorphism

Shape

draw()
Triangle Rectangle Circle
draw() draw() draw()

Encapsulation

OOP Key
Technologies

Abstraction

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Objects

QVG—
el
« 5%

#

Levels of Design

Software system c

Division into Data & Routines within Classes

When you examine the details of the routines inside a class,
you can see that many routines are simple boxes but a few are
composed of hierarchically organized routines, which require
still more design.

Division mto

subsystems / packages g D D

%};@

\.\\ 7_)

The act of fully defining the class’s routines often results in a better
understanding of the class’s interface, and that causes corresponding
changes to the interface—that is, changes back at Level 3.

Division into classes o
within packages

g0

L 1]
L1

Division into data and e —

IL:

routines within classes

Internal routine design @

The levels of design in a program. The system (1) is first organized into subsystems
(2). The subsystems are further divided into classes (3), and the classes are divided

into routines and data (4). The inside of each routine is also designed (35).

Levels of Design

)
Softwase system @) Internal Routine Design

\ J Design at the routine level consists of laying out the detailed
C] functionality of the individual routines. The design consists of

Divisieh (51 oy C] activities such as writing pseudo-code, looking up algorithms

subs_\'stems / packages D 5 o Mg .

D in reference books, deciding how to organize the paragraphs

N — of code in a routine, and writing programming-language code.

Internal routine design is typically left to the individual programmer
working on an individual routine.

—

Division into classes e ﬁ 7

within packages “@
—:@_>

Division into data and e

routines within classes

| @ﬂ%ﬂu

Internal routine design @

The levels of design in a program. The system (1) is first organized into subsystems
(2). The subsystems are further divided into classes (3), and the classes are divided

into routines and data (4). The inside of each routine is also designed (35).

Design Building Blocks: Heuristics

Because design is nondeterministic, skillful application of an effective set of
heuristics is the core activity in good software design

GOAL: Minimal Complexity

Design Heuristics: Find Real-World Objects

|Identify the objects and their
attributes (methods and data)

Determine what can be done to
each object

Determine what each object is
allowed to do to other objects

Determine the parts of each object
that will be visible to other objects

Define each object’s public
interface

Computer programs are usually Identifying the objects’ attributes is no more complicated than identifying the objects

based on real-world entities themselves. Each object has characteristics that are relevant to the computer program.
Client
Employee
name
name billingAddress
title accountBalance
What are the operations performed on each billingRate currentBillingAmount
object? GetHoursForMonth() EnterPayment()
1 | billingEmployee 1 17 clientToBil
clientToBill
* I " . Yhills
The two generic things objects can do to each Timecard Bill
other are containment and inheritance.
hours billDate
late % 01 -
: L ;o € BillForClient()
projectCode billingRecords

The visibility of the parts of an object should be determined.
This decision has to be made for both fields and methods

Define the formal, syntactic, programming-language level
interfaces to each object.

The data and methods the object exposes to every other
object is called the object’s “public interface.” The parts of
the object that it exposes to derived objects via inheritance
is called the object’s “protected interface.”

Design Heuristics: Form Consistent Abstractions

From a complexity point of view, the principal benefit of abstraction is that it allows you to ignore irrelevant details

sy el

Good programmers create abstractions at the routine-interface
level, class-interface level, and package-interface level

Design Heuristics: Encapsulate Implementation Details

Encapsulation picks up where abstraction leaves off. It helps managing complexity by forbidding you
to look at the complexity.

Encapsulation says that, not only are you allowed to take a simpler view of a complex
concept, you are not allowed to look at any of the details of the complex concept.
What you see is what you get—it’s all you get!

Design Heuristics: Inherit

Inheritance is one of object-oriented programming’s most powerful tools. It can provide great benefits when used
well, and it can do great damage when used naively.

Object-oriented programming allows
classes to inherit commonly used
state and behavior from other classes
and let you focus on the features that
make a specific class unique

Design Heuristics: Hide Secrets (Information Hiding)

Information hiding gives rise to the concepts of encapsulation and modularity and it is associated with the concept
of abstraction.

R Moeria

" On the Criteria To Be
Used in Decomposing
Systems into Modules
DL Pamas

MAN-MON’]

Fred Brooks 1995

Information hiding is a particularly powerful heuristic for Software’s
A good class interface is like the tip of an iceberg, Primary Technical Imperative because, beginning with its name and
leaving most of the class unexposed. throughout its details, it emphasizes hiding complexity

Design Heuristics: Hide Secrets (Information Hiding)

A good class interface is like the tip of an iceberg,
leaving most of the class unexposed.

Secrets and the Right to Privacy

In information hiding, each class (or package or routine) is characterized by the
design or construction decisions that it hides from all other classes. The secret
might be an area that’s likely to change, the format of a file, the way a data type
is implemented, or an area that needs to be walled off from the rest of the
program so that errors in that area cause as little damage as possible.

Design Heuristics: Hide Secrets (Information Hiding)

Two Categories of Secrets

Barriers to Information Hiding

Value of Information Hiding

Hiding complexity so that your brain doesn’t
have to deal with it unless you’re specifically
concerned with it

Excessive distribution of information

Circular dependencies

Information hiding is a theoretical techniques
that has indisputably proven its value in
practice, which has been true for a long time

Hiding sources of change so that when
change occurs, the effects are localized

Class data mistaken for global data

Perceived performance penalties

Large programs that use information hiding
were found years ago to be easier to modify—
by a factor of 4—than programs that don’t

Information hiding is part of the foundation of
both structured and object-oriented design.

Design Heuristics: Identify Areas Likely to Change

Accommodating changes is one of the most challenging aspects of good program design. The goal is to isolate
unstable areas so that the effect of a change will be limited to one routine, class, or package

Identify items that Separate items that are Isolate items that seem

seem likely to change likely to change likely to change

Nonstandard
) Hardware
Business rules . Input and output language
dependencies

features

Difficult design .

- . Data-size
and construction Status variables)
Areas constraints

Areas Likely to Change

A good technique for identifying areas likely to change is first to identify the minimal subset of the program
that might be of use to the user. The subset makes up the core of the system and is unlikely to change.

Design Heuristics: Keep Coupling Loose

Coupling describes how tightly a class or routine is related to other classes or routines.

The goal is to create classes and routines with small,
O f\j direct, visible, and flexible relations to other classes
and routines, which is known as “loose coupling.

© Loasg
% g] Size
- Coupling
: 7/ . . Visibility
Criteria Flexibility

lfSS ih’}ﬂ' ﬁnday“_
less co—ora'ldeﬁmh'ghj

. : Mor -) ' H 1
Less infurmation Ao, Ve ‘.‘":f,"'izf\ﬁ%« Kinds of Coupling
“r ch Tow

Simple-data-parameter coupling

DATA - STAMP - CopTRALL — CopP Mo N - CONTENT

Simple-object coupling

Classes and routines are first and foremost intellectual tools for
reducing complexity. If they’re not making your job simpler,

they’re not doing their jobs. Semantic coupling

Object-parameter coupling

Design Heuristics: Look for Common Design Patterns

Design patterns provide the cores of ready-made solutions that can be used to solve many of software’s most
common problems

sinterface» Adapter
Adapter II Client
+operation() Type:
What itis:
Convert the interface of a class into
another interface clients expect. Lets
o Ad: dasses work together that couldnt
e Adaptee ctherwise becausa of incompatible
[adaples ;
+operation()
Abstraction .
‘ Bridge
)
«interface» Type: Struciural
Implementor
What itis:
operationimp|
¢ Decouple an absiraction from its

T

o

implementation so that the two can vary
independently

«interfaces '
Proxy E Component Composite
“operation() children
Type: Structural . ~add(in ¢ ; Component) Type: Struciural
Wh "S‘wl-:, Kevienniated el What it is
at it fa: Chird(in i : int :
Provide a surrogate or piaceholder far trequest() i Y Ce:::-g:set g:;:ds wlxlohuet: g]n.:slu[ees‘sm
anather object to control access to it represent part-whole hierarchies.
4 Glents treat individual objects and
‘ jons of objects uniformly.
[| Component
RealSubject | reeresents Proxy Leat [~operations)
+equest() +request() [+operation(} (+add(inc . ?nl!‘pomm)
+gelChilc(in | - int)
ainterfaces
Abstract Factory c ConcrateComponent| Decorator
i N
+0p6ration +operation()

Type: Creational i 0 Type: Structural
What it is: — Decorator Whiﬂlﬂs:v »
Provides an mterace for creating Attach additional responsibilities 1o an
families of related or dependent) olhed d'ynamsf:ally. Provide a nexibter
objects without specifying their ¢ lo sub-classing for extending
concrete ciass. Con teD P AF functionality

+operation()

[+addedBehavior()

Facade

Type: Structural

| Whatitis:
Provide a unffied interface to a set of

level inferface that makes the subsystem
easier to use.

FlyweightFactory

getrlyweigh

key)]

Flyweight
Type: Structural

What itis:

| Use sharing to support large numbers of
fine grained objects efficiently.

-aliState

Interfaces in a subsystem. Defines a high-

Prototype
Type: Creational

What itis:

Specify the kinds of objects to create
using a prototypical instance, and
create new objects by copying this

prototypo. [1
ConcretePrototype ConcretePrototype2
*clone() +clone()

Singleton

Type: Creational Sing

|-static uniquelinstanca

What it is: |-singletonData

Ensure a dass only has one instance and)

provide a global point of access to it :g:c‘:;;gwmm

Builder Director npetacas
Type: Creational +construct() +huildPart()
What It is:
Separate the construction of a
cemplex object from its representing
0 that the same construction
process can ceate different ConcreteBuilder
represeniations.
[+bulldPart()
*getResult])
Factory Method Creato
s [+actoryMethod)
Type: Creatonal | anOperation()

What it is:

Define an interface for creating an
object, but let subclasses decide which
class to nstantiate. Lets a dass defer
instantation to subclasses.

CongcreteProduct

Design Heuristics: Look for Common Design Patterns

Design patterns provide the cores of ready-made solutions that can be used to solve many of software’s most
common problems

Pattern

Description

Abstract Factory

Adapter
Bridge

Composite

Decorator
Facade

Factory Method

iterator
Observer
Singleton
Strategy

Template Method

Supports creation of sets of related objects by specifying the kind
of set but not the kinds of each specific object.

Converts the interface of a class to a different interface.

Builds an interface and an implementation in such a way that
either can vary without the other varying.

Consists of an object that contains additional objects of its own
type so that client code can interact with the top-level object and
not concern itself with all the detailed objects.

Attaches responsibilities to an object dynamically, without creating

specific subclasses for each possible configuration of responsibilities.

Provides a consistent interface to code that wouldn't otherwise
offer a consistent interface.

Instantiates classes derived from a specific base class without
needing to keep track of the individual derived classes anywhere
but the Factory Method.

A server object that provides access to each element in a set
sequentially.

Keeps multiple objects in synch with one another by making an

object responsible for notifying the set of related objects about
changes to any member of the set.

Provides global access to a class that has one and only one instance.

Defines a set of algorithms or behaviors that are dynamically
interchangeable with each other.

Defines the structure of an algorithm but leaves some of the
detailed implementation to subclasses.

Reduce complexity by providing ready-made abstractions
Reduce errors by institutionalizing details of common solutions
Provide heuristic value by suggesting design alternatives

Streamline communication by moving the design dialog to a higher level

One potential trap with patterns is force-fitting code to use a
pattern. In some cases, shifting code slightly to conform to a
well-recognized pattern will improve understandability of the
code. But if the code has to be shifted too far, forcing it to look
like a standard pattern can sometimes increase complexity.

Another potential trap with patterns is feature-itis: using a
pattern because of a desire to try out a pattern rather than
because the pattern is an appropriate design solution.

Design Heuristics: Other Heuristics

Aim for Strong Cohesion Build Hierarchies Formalize Class Contracts
Cohesion refers to how closely all the routines Hierarchies are a useful tool for reducing complexity Contracts are useful for managing complexity
in a class or all the code in a routine support a because they allow you to focus on only the level of because, at least in theory, the object can
central purpose—how focused the class is detail you’re currently concerned with. safely ignore any noncontractual behavior.
Assign Responsibilities Design for Test Avoid Failure
Asking what each object A thought process that can yield interesting The high-profile security lapses of various well-known systems
should be responsible for design insights is to ask what the system will the past few years make it hard to avoid security vulnerabilities
look like if you design it to facilitate testing. but careful considerations should be taken to known failures.
Choose Binding Time Consciously Make Central Points of Control Consider Using Brute Force
Binding time refers to the time a specific value is The Principle of One Right Place—there should be One A brute-force solution that works is better
bound to a variable. Code that binds early tends Right Place to look for any nontrivial piece of code, and than an elegant solution that doesn’t work
to be simpler, but it also tends to be less flexible. One Right Place to make a likely maintenance change”
Draw a Diagram Keep Your Design Modular
You actually want to leave out most of the 1000 words Modularity’s goal is to make each routine or class like a
because one point of using a picture is that a picture can “black box”: You know what goes in, and you know what

represent the problem at a higher level of abstraction comes out, but you don’t know what happens inside.

Design Practices

Heuristics related to design attributes—what you want the completed design to
look like.

Design Practices: Iterate

Design is an iterative process. You don’t usually go from point A only to point B; you go from point A to point B and

@seed
with
RouGH

\DEAS

[]

'\

N .
@ srer;ﬂ"

CRITIQUE
EACH
IDEA

\
\\S @

Y P— .
r”erqfe & |\°\‘& iMPl

Cally big o the REALLY

BIG vALuUE

IDEAS ...

theinnographercom OO 0G

This image is shared under creative commons as part of the DIY Innovation Toolkit™

back to point A

As you cycle through candidate designs and try different
approaches, you’ll look at both high-level and low-level views.

The big picture you get from working with high-level issues
will help you to put the low-level details in perspective. The
details you get from working with low-level issues will provide a
foundation in solid reality for the high-level decisions.

Design Practices: Divide and Conquer

As Edsger Dijkstra pointed out, no one’s skull is big enough to contain all the details of a complex program, and that
applies just as well to design

PINKY ano THE BRIAW

TAKE OUER

THE

Incremental refinement is a powerful tool for
managing complexity.

Divide the program into different areas of concern, then tackle
each of those areas individually. If you run into a dead end in
one of the areas, iterate!

Design Practices: Top-Down and Bottom-Up

Top-down design begins at a high level of abstraction.
You define base classes or other nonspecific design
elements. As you develop the design, you increase the
level of detail, identifying derived classes, collaborating
classes, and other detailed design elements.

Bottom-up design starts with specifics and works
toward generalities. It typically begins by identifying
concrete objects and then generalizes aggregations of
objects and base classes from those specifics

Bottom Up

& -

Top Down

Design Practices: Experimental Prototyping

You can’t fully define the design problem until you’ve at least partially solved it.

Prototyping means writing the absolute minimum
amount of throwaway code that’s needed to
answer a specific design question.

A risk of prototyping arises when developers do
not treat the code as throwaway code.

Design Practices: Collaborative Design

In design, two heads are often better than one, whether those two heads are organized formally or informally

Design Practices: How Much Design Is Enough?

Sometimes only the barest sketch of an architecture is mapped out before coding begins. Other times, teams create
designs at such a level of detail that coding becomes a mostly mechanical exercise.

Level of Detail Needed

in Design Before Documentation
Factor Construction Formality
Design/construction team Low Detail Low Formality

has deep experience in

applications area.

Design/construction team Medium Detail Medium Formality
has deep experience but

is inexperienced in the

applications area.

Design/construction team Medium to High Detail Low-Medium Formality
is inexperienced.

Design/construction team Medium Detail —

has moderate-to-high

turnover.

Application is High Detail High Formality
safety-critical.

Application is Medium Detail Medium-High Formality
mission-critical.

Project is small. Low Detail Low Formality

Project is large. Medium Detail Medium Formality
Software is expected to Low Detail Low Formality

have a short lifetime
(weeks or months).

Software is expected to Medium Detail Medium Formality
have a long lifetime
(months or years).

Design Practices: Capturing Your Design Work

Insert design documentation into the code itself
Capture design discussions and decisions on a Wiki

Write e-mail summaries
Use a digital camera
Save design flip charts

Use CRC (Class, Responsibility, Collaborator) cards

;- o NI - Create UML diagrams at appropriate levels of detail

SUMMAR

Software’s Primary Technical Imperative is managing complexity . This is greatly aided by a
design focus on simplicity.

Simplicity is achieved in two general ways: minimizing the amount of essential complexity
that anyone’s brain has to deal with at any one time, and keeping accidental complexity
from proliferating needlessly.

Design is heuristic. Dogmatic adherence to any single methodology hurts creativity and
hurts your programs

Good design is iterative; the more design possibilities you try, the better your final design
will be.

Information hiding is a particularly valuable concept. Asking “What should | hide?” settles
many difficult design issues.

Lots of useful, interesting information on design is available outside this book. The
perspectives presented here are just the tip of the iceberg.

Working Classes

In the dawn of computing, programmers thought about programming in terms of statements.
Throughout the 1970s and 1980s, programmers began thinking about programs in terms of routines.
In the twenty-first century, programmers think about programming in terms of classes.

A class is a collection of data and
routines that share a cohesive, well-
defined responsibility. A class might
also be a collection of routines that
provides a cohesive set of services
even if no common data is involved

Maximizes the portion of a program that you can
safely ignore while working on another section of code

[

Class Foundations: Abstract Data Types (ADTs)

An abstract data type is a collection of data and operations that work on that data.

abstract data type E

Web Images Videos Maps News Explore
Also try: ADT HL7 Message Types - Abstract Data Types in Programming - Stac...

11,200,000 RESULTS Any time ~

Abstract data type

In computer science, an abstract data type (ADT) is a mathematical model
for data types where a data type is defined by its behavior (semantics)
from the point of view of a user of the data, specifically in terms of
possible values, possible operations on data of this type, and the
behavior of these operations.

Abstract data type - Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki’/Abstract_data_type

See more about Abstract data type

Understanding ADTs is essential to understanding
object-oriented programming.

An ADT might be a graphics window with all the
operations that affect it, a file and file operations,
an insurance-rates table and the operations on it,
or something else

Tap into the power of being able to work in the
problem domain rather than at the low-level
implementation domain!

Instead of inserting a node into a linked list, you can add a cell to

a spreadsheet, a new type of window to a list of window types,
or another passenger car to a train simulation

Class Foundations: Abstract Data Types (ADTs)

Suppose you're writing a program to control text output to the screen using a
variety of typefaces, point sizes, and font attributes (such as bold and italic)

1 Avery 16 (Viaaia 51 Priaing 56 Zoeg Using ADT Not Using ADT
. - ¢ - < == »
2 fower 47 oy 52 Stwannaly 57 Keanedy . : i i
2 "-["” ‘“,(" A g A group of font routines bundled with Ad hoc approach to manipulating fonts. For
5 Ameli 8 Layla 55 AP 58 el . .
peeis g *("(‘ e o the data—the typeface names, point example, if you need to change to a 12-
14 ORE. 19 oLitliar 54 tumn 39 Carolf)
/’7?(" R - o sizes, and font attributes—they point font size, which happens to be 16
5 A 5 ison 55 60 Crabrie . .
15 Adbrey, 50 0 Violet Jabriella operate on. plXEI h|gh
currentFont.SetSizeInPoints(sizeInPoints) currentFont.size = 16
o1 Charles o6 Biase 71 K(]UUCN 76 (ameron currentFont.SetSizeInPixels(sizeInPixels) currentFont.size = PointsToPixels(12)
currentFont.SetBoldOn() currentFont.sizeInPixels = PointsToPixels(12)
62 Jenemiah nrljﬂ[‘d[]ﬂ 7 Tristan 77 dace currentFont.SetBoldOff() currentFont.sizeInPixels = PointsToPixels(12)
. < currentFont.SetItalicOn() currentFont.attribute = currentFont.attribute or 0x02
65 QUSHN 68 Wyatt 75 David ~ 7¢ THOMAS currentFont.SetItalicOff() currentFont.attribute = currentFont.attribute or BOLD

currentFont.SetTypeFace(faceName) currentFont.bold = True

61 AQEON 69 ke, 7+ Camden 79 Nathan

65 Dominic 70 Benﬂeé» 75 Sebastion 50 Hunter

Class Foundations: Abstract Data Types (ADTs)

Benefits

You can hide Changes don’t affect the You can make the interface
implementation details whole program more informative
It’s easier to improve The program is more The program becomes
performance obviously correct more self-documenting
You don’t have to pass You're able to work with real-world entities rather than

data all over your program with low-level implementation structures

Class Foundations: Abstract Data Types (ADTs)

Suppose you’'re writing software that controls the cooling system for a nuclear
reactor. You can treat the cooling system as an abstract data type.

coolingSystem.GetTemperature()
coolingSystem.SetCirculationRate(rate)
coolingSystem.OpenValve(valveNumber)
coolingSystem.CloseValve(valveNumber)

Gas

cooling
towers

The specific environment would determine the
code written to implement each of these
operations.

The rest of the program could deal with the
J cooling system through these functions and
cootnaweer) wouldn’t have to worry about internal details
of data-structure implementations, data-
structure limitations, changes, and so on.

Class Foundations: Abstract Data Types (ADTs)

Cruise Control

Set speed

Get current settings
Resume former speed
Deactivate

List

Initialize list

Insert item in list
Remove item from list
Read next item from list

Build or use typical low-
level data types as ADTs,

Blender

Turn on

Turn off

Set speed

Start “Insta-Pulverize
Stop “Insta-Pulverize"

Light
Turn on
Turn off

not as low-level data types

Fuel Tank

Fill tank

Drain tank

Get tank capacity
Get tank status

Stack

Initialize stack

Push item onto stack
Pop item from stack
Read top of stack

Treat common objects
such as files as ADTs

Set of Help Screens

Add help topic

Remove help topic

Set current help topic
Display help screen
Remove help display
Display help index

Back up to previous screen

Pointer
Get pointer to new memory

Dispose of memory from
existing pointer

Change amount of memory
allocated

Treat even simple
items as ADTs

Menu

Start new menu
Delete menu

Add menu item
Remove menu item
Activate menu item
Deactivate menu item
Display menu

Hide menu

Get menu choice

File

Open file

Read file

Write file

Set current file location
Close file

Elevator

Move up one floor
Move down one floor
Move to specific floor

Report current floor
Return to home floor

Refer to an ADT
independently of the
medium it’s stored on

Class Foundations: Abstract Data Types (ADTs)

Handling Multiple Instances of Data with ADTs in Non-Object-Oriented Environments

SetCurrentFontSize(sizeInPoints) Option 1: Explicitly identify instances
SetCurrentFontBoldOn() each time you use ADT services.
SetCurrentFontBoldOff()

SetCurrentFontItalicOn()

SetCurrentFontItalicOff() Option 2: Explicitly provide the data
SetCurrentFontTypeFace(faceName) used by the ADT services.

CreateFont(fontId)

DeleteFont(fontId) Option 3: Use implicit instances
SetCurrentFont(fontId)

Good Class Interfaces

The first and probably most important step in creating a
high-quality class is creating a good interface.

Creating a good abstraction for the interface to represent and ensuring that the details remain hidden
behind the abstraction.

Good Abstraction Good Encapsulation

Good Class Interfaces: Good Abstraction

A class interface provides an abstraction of the implementation that's hidden behind the interface

r
_

Employce

class Employee {
public:
// public constructors and destructors
Employee();
Employee(
FullName name,
String address,
String workPhone,
String homePhone,
TaxId taxIdNumber,
JobClassification jobClass

);
virtual ~Employee();

// public routines
C I AS S FullName GetName() const;
String GetAddress() const;

String GetWorkPhone() const;
String GetHomePhone() const;
TaxId GetTaxIdNumber() const;
JobClassification GetlobClassification() const;

It would contain data describing private:
the employee's name, address, b

phone number, and so on. It , , B ‘
. Lo, Internally, this class might have additional routines and data to
would offer services to initialize support these services, but users of the class don't need to

and use an em p|oyee know anything about them, so it is great.

Good Class Interfaces: Good Abstraction

A class interface provides an abstraction of the implementation that's hidden behind the interface

class Program {

public:

// public routines

void
void

ImtializeCommandStack(Q);
PushCommand(Command command);

Command PopCommand() ;

void
void
void
void
void
void

private:

LF

ShutdownCommandStack() ;
ImtializeReportFormatting();
FormatReport(Report report);
PrintReport(Report report);
ImtializeGlobalData();
ShutdownGlobalData(Q);

It's hard to see any connection among the command
stack and report routines or the global data. The class
interface doesn't present a consistent abstraction. The
routines should be reorganized into more focused
classes, each of which provides a better abstraction in
its interface.

class Program {
public:

// public routines

void InitializeUserInterface();
void ShutDownUserInterface();
void InitializeReports();

void ShutDownReports();

private:

13

The cleanup of this interface assumes that some of
the original routines were moved to other, more
appropriate classes and some were converted to
private routines used by InitializeUserlInterface() and
the other routines.

Good Class Interfaces: Good Abstraction

The pursuit of good abstract interfaces gives rise to several guidelines for
creating class interfaces.

Present a consistent Each class should implement one and only one ADT.

level of abstraction in If you find a class implementing more than one ADT, or if you
the cIass inte rface can't determine what ADT the class implements, it's time to

reorganize the class into one or ore well defined ADTs.

One Class = One ADT T R i
not 1tol
1(29), (4,5),(L,5)} {(29),(4,6),(11,5) }
2 2 9

6

4 4
11 11 >

Domain Range Domain Range

www . mattwarehouse.com

Good Class Interfaces: Good Abstraction

The pursuit of good abstract interfaces gives rise to several guidelines for

creating class interfaces.

Present a consistent
level of abstraction in
the class interface

C++ Example of a Class Interface with Mixed Levels of Abstraction
ﬁ class EmployeeCensus: public ListContainer {
‘a b public:
CODING
HORROR

One Class = One ADT

The abstraction of these =
routines is at the "employee”
level.

The abstraction of these — -
routines is at the *list” level.

// public routines
void AddEmployee(Employee employee);
void RemoveEmployee(Employee employee);

Employee NextItemInList();
Employee FirstItem();
Employee LastItem();

private:

};

Ask yourself whether the fact that a container class is used should be part of the abstraction
an implementation detail that should be hidden from the rest of the program.

. Usually that's

Good Class Interfaces: Good Abstraction

The pursuit of good abstract interfaces gives rise to several guidelines for
creating class interfaces.

C++ Example of a Class Interface with Consistent Levels of Abstraction

- class EmployeeCensus {
Present a consistent LA
level of abstraction in ft piA e rotines
5 The abstraction of all these =] wvoid AddEmployee(Employee employee);
the ClaSS |nte rfa ce routines is now at the void RemoveEmployee({ Employee employee);
"employee” level. Employee NextEmployee();
One Class = One ADT Employee FirstEmployee();
| Employee LastEmployee();
private:
That the dass uses the ——— ListContainer m_Employeelist;
ListContainer library is now i
hidden. };
Programmers might argue that inheriting from That argument fails the main test for inheritance, which is, "Is
ListContainer is convenient because it supports inheritance used only for "is a" relationships?“ To inherit from
polymorphism, allowing an external search or sort ListContainer would mean that EmployeeCensus "is a“

function that takes a ListContainer object. ListContainer, which obviously false

Good Class Interfaces: Good Abstraction

public class Employee {
private String name;
private String address; public class Salary extends Employee {
private int number; private double salary; // Annual salary

public Employee(String name, String address, int number) {
System.out.println("Constructing an Employee");
this.name = name;

public Salary(String name, String address, int number, double salary) {
super(name, address, number);

this.address = address; setSalary(salary);
this.number = number; }
. public void mailCheck() {
public void mailCheck() { System.out.println("Within mailCheck of Salary class ");
System.out.println(“Mailing a check to " + this.name + ™ " + this.address); System.out.println("Mailing check to " + getName()
} + " with salary " + salary);
}

public String toString() {

return name + " " + address + " " + number; public double getSalary() {
} return salary;
public String getName() { }
return name;
} public void setSalary(double newSalary) {
if(newSalary >= 0.0) {
public String getAddress() { salary = newSalary;
return address; }
} }

public void setAddress(String newAddress) {

address = newAddress:; public double computePay() {

System.out.println("Computing salary pay for

+ getName());

} return salary/52;
public int getNumber() { }

return number; }
}

Good Class Interfaces: Good Abstraction

The pursuit of good abstract interfaces gives rise to several guidelines for
creating class interfaces.

Present a consistent Be sure you understand Provide services Move unrelated
level of abstraction what abstraction the in pairs with information to
in the class interface class is implementing their opposites another class
Make interfaces programmatic Beware of erosion of the Don’t add public members
rather than semantic when interface’s abstraction that are inconsistent with the
possible under modification interface abstraction

Consider abstraction and
cohesion together

Good Class Interfaces: Good Encapsulation

| Variables |

Abstraction helps to manage complexity by providing models that allow
you to ignore implementation details. Encapsulation is the enforcer
that prevents you from looking at the details even if you want to

Without encapsulation, abstraction tends to break down

Good Class Interfaces: Good Encapsulation

Minimize accessibility of classes and members

If you're wondering whether a specific

routine should be public, private, or If exposing the routine is consistent with

protected, one school of thought is the abstraction, it's probably fine to

that you should favor the strictest expose it. If you're not sure, hiding more
level of privacy that's workable is generally better than hiding less.

Meyers 1998, Bloch 2001

Good Class Interfaces: Good Encapsulation

Don’t expose member data in public

Exposing member data is a violation of encapsulation and
limits your control over the abstraction

float GetX();

) float GetY();

:{Oat X3 float GetZ();
oot o) void SetX(float x);
’ void SetY(float y);
void SetZ(float z);

Good Class Interfaces: Good Encapsulation

Avoid putting private implementation details into a class’s interface

With true encapsulation, programmers would not be able to see implementation details at all

C++ Example of Exposing a Class’s Implementation Details

class Employee {
public:

Employee(

pri

Here are the exposed
implementation details.

|

FullName name,

String address,

String workPhone,

String homePhone,

TaxId taxIdNumber,
JobClassification jobClass

JE

FullName GetName() const;
String GetAddress() const;
vate:

String m_Name;

String m_Address;
int m_jobClass;

e

Here the implementation
details are hidden behind
the pointer.

C++ Example of Hiding a Class’s Implementation Details

class Employee {
public:

Employee(...);

FullName GetName() const;
String GetAddress() const;

private:
I » EmployeeImplementation *m_implementation;

ks

Good Class Interfaces: Good Encapsulation

Don’t make assumptions about the class’s users

A class should be designed and implemented to adhere to the contract implied by the class interface. It
shouldn’t make any assumptions about how that interface will or won’t be used,

// 1initialize x, y, and z to 1.0 because DerivedClass blows
// up if they're initialized to 0.0

Good Class Interfaces: Good Encapsulation

Favor read-time convenience to write-time convenience

Code is read far more times than it’s written, even during initial development

Favoring a technique that speeds write-time
convenience at the expense of read-time
convenience is a false economy.

Good Class Interfaces: Good Encapsulation

Be very, very wary of semantic violations of encapsulation

The difficulty of semantic encapsulation compared to syntactic encapsulation is similar.

Not calling Class A’s InitializeOperations() routine because you know that Class A’s PerformFirstOperation() routine calls it
automatically.

Not calling the database.Connect() routine before you call employee.Retrieve(database) because you know that the
employee.Retrieve() function will connect to the database if there isn’t already a connection.

Not calling Class A’s Terminate() routine because you know that Class A’s PerformFinalOperation() routine has already
called it.

Using a pointer or reference to ObjectB created by ObjectA even after ObjectA has gone out of scope, because you know
that ObjectA keeps ObjectB in static storage and ObjectB will still be valid.

Using Class B’s MAXIMUM _ELEMENTS constant instead of using ClassA.MAXIMUM_ELEMENTS , because you know that
they’re both equal to the same value.

Good Class Interfaces: Good Encapsulation

Watch for coupling that’s too tight

In general, the looser the connection, the better

Minimize accessibility of classes and members.

Make data private rather than protected in a W _Luomocuerce [
base class to make derived classes less tightly B 5o Tt T

coupled to the base class.

Avoid exposing member data in a class’s public
interface

EACH UNIT SHOULD ONLY TALK TOITS FRIENDS. DON'T TALK TO STRANGERS.

— . o
Be wary of semantic violations of encapsulation @ Jyaa

Observe the “Law of Demeter”

Cisa

“stranger”

to A*

C

““““““

Messages from A to

N B are OK

Messages from Ato
C are discouraged

A
4

*Note: a friend of a
friend is a stranger.

Design and Implementation Issues

Defining good class interfaces goes a long way
toward creating a high-quality program.

Design and Implementation Issues

Containment (“has a” Relationships)

Containment is the simple idea that a class contains a primitive data element or object. Inheritance is
more popular than containment, not because it's better.

Implement “has a” through Implement “has a” through private Be critical of classes that contain more
containment inheritance as a last resort than about seven data members
An employee “has a” name, “has a” phone In some instances you might find that you can’t The number “7+2” has been found to be a
number, “has a” tax ID. You can usually achieve containment through making one number of discrete items a person can
accomplish this by making the name, object a member of another

remember while performing other tasks
phone number, and tax ID member data of

the Employee class.

Design and Implementation Issues

Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to
create simpler code by defining a base class that specifies common elements of two or more derived classes.

For each member routine, will the routine
be visible to derived classes? Will it have a
default implementation? Will the default
implementation be overridable?

Implement “is a” through
public inheritance

When a programmer decides to create a new class
by inheriting from an existing class, that
programmer is saying that the new class “is a”
more specialized version of the older class.

For each data member (including variables,
named constants, enumerations, and so
on), will the data member be visible to

derived classes?

If the derived class isn’t going to adhere
completely to the same interface contract
defined by the base class, inheritance is not the
right implementation technique. Consider
containment or making a change further up the
inheritance hierarchy.

Design and Implementation Issues

Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to
create simpler code by defining a base class that specifies common elements of two or more derived classes.

De5|g.n and. document If a class isn’t designed to be inherited from, make its members
for inheritance or non-virtual in C++, final in Java, or non-overridable in
prohibit it Microsoft Visual Basic so that you can’t inherit from it.

Inheritance adds complexity to a program,
and, as such, it’s a dangerous technique

Design and Implementation Issues

Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Adhere to the Liskov

Substitution Principle
(LSP)

Barbara Liskov argued that you shouldn’t
inherit from a base class unless the derived
class truly “is a” more specific version of
the base class

Subclasses must be usable through the base class interface
without the need for the user to know the difference. In other

words, all the routines defined in the base class should mean
the same thing when they’re used in each of the derived
classes.

If you have a base class of Account and derived classes of
CheckingAccount, SavingsAccount, and AutoLoanAccount, a
programmer should be able to invoke any of the routines derived
from Account on any of Account's subtypes without caring about
which subtype a specific account object is the derived classes.

Design and Implementation Issues

Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Overridable Not Overridable
Implementation: Default Overridable Routine Non-Overridable Routine
Provided
Be sure to inherit Only Implementation: No Default Abstract Overridable Not used (doesn't make sense to
Provided Routine leave a routine undefined and

what you want to inherit

not allow it to be overridden)

A derived class can inherit member routine

interfaces, implementations, or both. An abstract overridable routine means that the derived class inherits the

routine’s interface but not its implementation.

An overridable routine means that the derived class inherits the routine’s
interface and a default implementation and it is allowed to override the
default implementation

A non-overridable routine means that the derived class inherits the
routine’s interface and its default implementation and it is not allowed to
override the routine’s implementation.

Design and Implementation Issues

Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Don’t “override” a non- Move common interfaces, data, Be suspicious of base
overridable member and behavior as high as possible classes of which there is
function in the inheritance tree only one derived class
Be suspicious of classes Avoid deep inheritance Make all data private,
that override a routine trees not protected

and do nothing inside
the derived routine

Design and Implementation Issues

Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Prefer polymorphism to
extensive type checking

C++ Example of a Case Statement That Probably Should Not Be Replaced
by Polymorphism

C++ Example of a Case Statement That Probably Should Be Replaced switch (ui.Command()) {
by Polymorphism case Comrfland_OpenFﬂe:
OpenFile();
switch (shape.type) { break;
case Shape_Circle: case Command_Print:
shape.DrawCircle(Q); Print();
break; break;
case Shape_Square: case Command_Save:
shape.DrawSquare() ; Save();
break; break;
case Command_Exit:
} ShutDown() ;

break;

Design and Implementation Issues

Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Why Are There So Many Rules for Inheritance?

If multiple classes share common data but not behavior, create
a common object that those classes can contain.

If multiple classes share common behavior but not data, derive
them from a common base class that defines the common
routines

If multiple classes share common data and behavior, inherit
from a common base class that defines the common data and
routines.

Inherit when you want the base class to control your interface;
contain when you want to control your interface.

Design and Implementation Issues

Keep the number of routines in a
class as small as possible

Minimize indirect routine calls to
other classes

Initialize all member data in all
constructors, if possible

Prefer deep copies to shallow
copies until proven otherwise

A deep copy of an object is a member-wise
copy of the object’s member data; a
shallow copy typically just points to or
refers to a single reference copy

Member Functions and Data

Disallow implicitly generated
member functions and operators
you don’t want

In general, minimize the extent to
which a class collaborates with
other classes

Minimize the number of
different routines called by a class
One study found that the number of faults
in a class was statistically correlated with

the total number of routines that were
called from within a class

Enforce the singleton property
by using a private constructor

Java Example of Enforcing a Singleton with a Private Constructor

public class MaxId {
// constructors and destructors

Here is the private
constructor.

—— private MaxId() {

1

// public routines

Here is the public routine | —— public static MaxId GetInstance() {

that provides access to the

single instance.

return m_instance;

1

// private members

Here is the single instance.

private static final MaxId m_instance = new MaxId();

Reasons to Create a Class

Model real-world objects

Create a class for each real-world object type that your program models

5th gear

Reasons to Create a Class

Model abstract objects

An object that isn’t a concrete, real-world object but that provides an abstraction of other concrete objects.

Shape
-color
+getArea()
+toString()
For example, the classic Shape object. VAN
Rectangle and Triangle really exist, but
Shape is an abstraction of other Rectangle Triangle
specific shapes. “Length -ﬁZith
+getArea() +getArea()
+toString() +toString()

Reasons to Create a Class

Reduce complexity

Create a class to hide information so that you won’t need to think about it, no need to know about its internal
workings. Also, to minimize code size and improve maintainability

Reasons to Create a Class

Isolate complexity

Complexity in all forms—complicated algorithms, large data sets, intricate communications protocols, and so
on—is prone to errors

HOW TO BE

SUCCESSFUL

. . WITH THE NEW
If an error does occur, it will be easier

to find if it isn’t spread through the
code but is localized within a class

ALGORITHM
CHANGE

Reasons to Create a Class

Hide implementation
details

Streamline parameter
passing

If you’re passing a parameter among
several routines, that might indicate a
need to factor those routines into a
class that share the parameter as
object data

Limit effects of
changes

Isolate areas that are likely to
change so that the effects of
changes are limited to the scope of
a single class or a few classes

Make central points
of control

It’s a good idea to control each task
in one place

Hide global data

If you need to use global data, you can hide its
implementation details behind a class interface. Working
with global data through access routines provides several
benefits compared to working with global data directly.

Facilitate reusable code

Code put into well-factored classes can be reused in other
programs more easily than the same code embedded in
one larger class

Avoid creating god classes,
all-knowing and all-powerful

If a class spends its time retrieving data from other
classes using Get() and Set() routines (that is,
digging into their business and telling them what
to do), ask whether that functionality might better
be organized into those other classes rather than
into the god class (Riel 1996).

Classes to Avoid

Eliminate irrelevant
classes

If a class consists only of data but no
behavior, ask yourself whether it’s really a
class and consider demoting it so that its
member data just becomes attributes of one
or more other classes.

Avoid classes named after
verbs

A class that has only behavior but no data is
generally not really a class. Consider turning
a class like Databaselnitialization() or
StringBuilder() into a routine on some other
class.

Beyond Classes: Packages

Classes are currently the best way for programmers to achieve modularity. But
modularity is a big topic, and it extends beyond classes.

—-I classes I :——| myproject I

)
I

|

" [oprorees_

il

.

MyClass.class

PriorityQueue

Deque

ArrayDeque

LinkedHashSet
SortedSet
?

What are the right and wrong things?

//SportsCar class (SportsCar. java)

public class SportsCar extends Engine {

public Car myCar = new Car(); //mycC

~
g
i,
|
o
jAl]
+
[
"
-
8)
r+
™

/

public void activateSportMode(){ //Implementation }

public void activateComfortMode () { //Implementation }

//Main function: required to run a Java program

public static void main(String[] args) {

SportsCar sc = new SportsCar(); //Object initialization of SportsCar
sc.myCar.brand = "Ferrari";

sc.myCar.numberOfGears = 6;

sc.engineMaxSpeed = 315;

sc.enginePower = 552;

n

2
c.activateSportMode () ;

//Engine cl

(Engine. java)

public class Engine {

. . - 1 1 1 3 x .
public String brand; public int enginePower;

public int productionYear; public int engineMaxSpeed;

public int numberOfGears; private String engineType;
. . i 1

public int numberOfSeats; ?

public void start(){ //Implementation }
public void stop(){ //Implementation }
public void changeGear ()

-
RS
S

B

b~
©
@
[
~
hil
+
e
(o)
=

Class interfaces should provide a consistent abstraction. Many
problems arise from violating this single principle.

A class interface should hide something—a system interface, a design
decision, or an implementation detail.

Containment is usually preferable to inheritance unless you’re
modeling an “is a” relationship.

Inheritance is a useful tool, but it adds complexity, which is counter to
Software’s Primary Technical Imperative of managing complexity.

Classes are your primary tool for managing complexity. Give their
design as much attention as needed to accomplish that objective.

High Quality Routines

What is a routine?

A routine is an individual method or procedure invocable for a single
purpose. Examples include a function in C++, a method in Java, a
function or sub procedure in Microsoft Visual Basic

What is a high-quality routine? That’s a harder question.

What is a high-quality routine?

C++ Example of a Low-Quality Routine

void Handlestuff(CORP_DATA & inputRec, int crntQtr, EMP_DATA empRec,

- double & estimRevenue, double ytdRevenue, int screenX, int screeny,

:g::g: COLOR_TYPE & newColor, COLOR_TYPE & prevColor, StatusType & status,
int expenseType)

{
int i;
for (i =0; i <100; i++) {
inputRec.revenuel[i] = 0;
inputRec.expense[i] = corpExpense[crntQtr 1[i];
1
UpdateCorpDatabase(empRec);
estimRevenue = ytdRevenue * 4.0 / (double) crntQtr;
newColor = prevcColor;
status = SUCCESS;
if (expenseType == 1) {
for (i =0; i < 12; i++)
profit[i] = revenue[i] - expense.typell[i];
}
else if (expenseType == 2) {
profit[i] = revenue[i] - expense.type2[i];
}
else if (expenseType == 3)
profit[i] = revenue[i] - expense.type3[i];

i

What is a high-quality routine?

void HandleStuff(CORP_DATA & inputRec, int crntQtr, EMP_DATA empRec,
double & estimRevenue, double ytdRevenue, int screenX, int screeny,
COLOR_TYPE & newColor, COLOR_TYPE & prevColor, StatusType & status,
int expenseType)
{
int 1i;
for (1 =0; 1 < 100; i++) {
inputRec.revenue[i] 0;
inputRec.expense[i] corpExpense[crntQtr][i1];
I;
UpdateCorpDatabase(empRec);
estimRevenue = ytdRevenue * 4.0 / (double) crntQtr;
newColor = prevColor;
status = SUCCESS;
if (expenseType == 1) {
for (1 =0; 1 < 12; i++)
profit[i] = revenue[i] - expense.typel[i];

}
else if (expenseType == 2) {
profit[i] = revenue[i] - expense.type2[i];
1
else if (expenseType == 3)
profit[i] = revenue[i] - expense.type3[i];

}

The routine has too many parameters. The upper limit for an
understandable number of parameters is about 7

The routine’s parameters are poorly ordered and are not
documented

One of the routine’s parameters is passed incorrectly: prevColor

The routine has a bad name. HandleStuff () tells you nothing about what the routine does.
The routine isn’t documented.

The routine has a bad layout. The physical organization of the code on the page gives few
hints about its logical organization.

The routine’s input variable, inputRec, is changed. If it’s an input variable, its value should
not be modified

The routine reads and writes global variables—it reads from corpExpense and writes to
profit . It should communicate with other routines more directly than by reading and
writing global variables.

The routine doesn’t have a single purpose. It initializes some variables, writes to a database,
does some calculations—none of which seem to be related to each other in any way. A
routine should have a single, clearly defined purpose.

The routine doesn’t defend itself against bad data. If crntQtr equals 0, the expression
ytdRevenue * 4.0 / (double) crntQtr causes a divide-by-zero error.

The routine uses several magic numbers: 100, 4.0, 12,2 ,and 3.

Some of the routine’s parameters are unused: screenX and screenY are not referenced
within the routine.

is labeled as a reference parameter (&) even though it isn’t assigned a value within the routine.

Valid Reasons to Create a Routine

Reduce Complexity

The single most important reason to create a routine is to reduce a program’s complexity. Create
a routine to hide information so that you won’t need to think about it.

Other reasons to create routines:
minimizing code size and improving
maintainability and correctness

But without the abstractive power
of routines, complex programs
would be impossible to manage.

An indication that a routine needs
to be broken out is loop deep
nesting or a conditional

Valid Reasons to Create a Routine

Introduce an intermediate, understandable abstraction

Putting a section of code into a well-named routine is one of the best ways to document its purpose

if (node <> NULL) then
while (node.next <> NULL) do
node = node.next
TeafName = node.name
end while
else

lTeafName =
end if

-

leafName = GetLeafName(node)

Valid Reasons to Create a Routine

Avoid duplicate code

Undoubtedly the most popular reason for creating a routine is to avoid duplicate code.

extern int array all;
extern int array b[];

int sum a = 0;

for (int 1 = 0; 1 < 4; it+)
sum a += array alil;

int average a = sum a / 4;
int sum b = 0;
for (int 1 = 0; 1 < 4; i++)

sum b += array b[i];

int average b = sum b / 4;

Valid Reasons to Create a Routine

Hide Sequences

It’s a good idea to hide the order in which events happen to be processed

For example, a sequence might be
found when you have two lines of
code that read the top of a stack and

decrement a stackTopvariable. Hiding that assumption will be better than
but those two lines of code into 2 baking it into code from one end of the
PopStack() routine to hide the System to the other.

assumption about the order in
which the two operations must be
performed

Valid Reasons to Create a Routine

Hide Pointer Operations

Pointer operations tend to be hard to read and error prone. By isolating them in routines, you can
concentrate on the intent of the operation rather than on the mechanics of pointer manipulation

1if (node <> NULL) then

if the operations are done in only while (node.next <> NULL) do

one place, you can be more certain

that the code is correct. If you find a node = node.next
better data type than pointers, you leafName = node.name
can change the program without end while
traumatizing the code that would 1
) else
have used the pointers. -
TeatName =

end 1if

Valid Reasons to Create a Routine

Improve portability

Use of routines isolates nonportable capabilities, explicitly identifying
and isolating future portability work.

Nonportable capabilities include nonstandard language features,
hardware dependencies, operating-system dependencies, and so on.

Valid Reasons to Create a Routine

Simplify Complicated Boolean Tests

Understanding complicated boolean tests in detail is rarely necessary for understanding program flow.

Putting such a test into a function Giving the test a function of its own emphasizes
makes the code more readable

because (1) the details of the test its 5|gn|f|cance-. It encourages extra effor.t to.
are out of the way and (2) a make the details of the test readable inside its
descriptive function name function.

summarizes the purpose of the test.

Valid Reasons to Create a Routine

Improve Performance

You can optimize the code in one place instead of in several places.

Centralizing code into a routine
means that a single optimization
benefits all the code that uses that

Having code in one place makes it practical to
recode the routine with a more efficient

routine, whether it uses it directly or algorithm or in a faster, more efficient

indirectly.

language.

Operations That Seem Too Simple to Put Into Routines

Constructing a whole routine to contain two or three lines of code
might seem like overkill, but experience shows how helpful a good
small routine can be.

Small routines offer several advantages. One is that they improve readability.

Pseudocode Example of a Function Call to a Calculation Function

points = DeviceUnitsToPoints(deviceUnits)

Pseudocode Example of a Calculation
points = deviceUnits * (POINTS_PER_INCH / DeviceuUnitsPerInch()) . .
Pseudocode Example of a Calculation Converted to a Function

Function DeviceUnitsToPoints (deviceUnits Integer): Integer
DeviceUnitsToPoints = deviceUnits *
(POINTS_PER_INCH / DeviceuUnitsPerInch())
End Function

Operations That Seem Too Simple to Put Into Routines

Pseudocode Example of a Calculation That Expands Under Maintenance

Function DeviceUnitsToPoints(deviceUnits: Integer) Integer;
it (DeviceunitsPerInch() <> 0)
DeviceUnitsToPoints = deviceUnits *
(POINTS_PER_INCH / DeviceUnitsPerInch())
else
DeviceUnitsToPoints = 0
end if
End Function

If that original line of code had still been in a dozen places, the test would have been repeated a dozen
times, for a total of 36 new lines of code. A simple routine reduced the 36 new lines to 3.

Design at the Routine Level

Cohesion Coupling

how closely the operations the relationships between
in a routine are related functions

Design at the Routine Level: Cohesion

Some programmers prefer the term “strength”; how strongly related are the operations in a routine

Cosine()

A function like Cosine() is perfectly cohesive

because the whole routine is dedicated to
performing one function.

One study of 450 routines found that 50
percent of the highly cohesive routines

were fault free, whereas only 18 percent
of routines with low cohesion were fault

free
(Card, Church, and Agresti1986)

CosineAndTan()

A function like CosineAndTan() has lower cohesion
because it tries to do more than one thing. The
goal is to have each routine do one thing well and
not do anything else.

Another study of a different 450 routines (which is just
an unusual coincidence) found that routines with the
highest coupling-to-cohesion ratios had 7 times as
many errors as those with the lowest coupling-to-

cohesion ratios and were 20 times as costly to fix
(Selby and Basili1991)

Design at the Routine Level: Desired Cohesion

Functional Cohesion

Functional cohesion is the strongest and best kind of cohesion,
occurring when a routine performs one and only one operation

 Compute Cosine of Angle

* Verify Alphabetic Syntax

* Read Transaction Record

* Determine Customer Mortgage Repayment
 Compute Point of Impact of Missile

e Calculate Net Employee Salary

* Assign Seat to Airline Customer

Design at the Routine Level: Acceptable Cohesion

Sequential Cohesion

Sequential cohesion exists when a routine contains operations that must be performed in a specific order, that
share data from step to step, and that don’t make up a complete function when done together.

For example, given a birth date, calculates an employee’s age and time to retirement.

If the routine calculates the age and then uses that result to calculate the employee’s time to retirement, it has
sequential cohesion.

Design at the Routine Level: Acceptable Cohesion
Communicational Cohesion

Communicational cohesion occurs when operations in a routine make use of the same data and aren’t
related in any other way.

For example, suppose you wrote a function to query a database to get the name and
office number for an employee in your company.

It may make sense for your application, but the only common point between the two operations is that the data
comes from the same employee record.

. Find Title of Book

. Find Price of Book

. Find Publisher of Book
. Find Author of Book

o o0 C

Design at the Routine Level: Acceptable Cohesion
Temporal Cohesion

Temporal cohesion occurs when operations are combined into a routine because they are all done at the same time.

Some programmers consider temporal cohesion to be unacceptable because it’s
sometimes associated with bad programming practices such as having a mixture of
dissimilar code in a Startup() routine.

To avoid this problem, think of temporal a. Put out Milk Bottles
routines as organizers of other events. b. Put out Cat

have the temporally cohesive routine call other routines to

perform specific activities rather than performing the operations C. Tum Off TV

directly itself. But this raises the issue of choosing a name that d B
. Brush Teeth

describes the routine at the right level of abstraction

It will be clear that the point of the routine is to orchestrate activities rather than to do
them directly.

Design at the Routine Level: Unacceptable Cohesion

Procedural Cohesion

Procedural cohesion occurs when operations in a routine are done in a specified order.

The routine has procedural cohesion because it puts a set of operations in a specified
order and the operations don’t need to be combined for any other reason.

* Clean Utensils from Previous Meal
* Prepare Chicken for Roasting

To achieve better c.ohesolon, put. « Make Phone Call
the separate operations into their e Take Shower
own routines. * Chop Vegetables

 Set Table

Design at the Routine Level: Unacceptable Cohesion

Logical Cohesion

Logical cohesion occurs when several operations are stuffed into the same routine and one of the
operations is selected by a control flag that’s passed in.

The control flow or “logic” of the routine is the only thing that ties the operations
together—they’re all in a big if statement or case statement together.

public void sample(int flag) { A
switch (flag) { do same thing

case ON:
// bunch of on stuff /’

break; \\
case OFF:
// bunch of off stuff

break;
| plant flower | plant
tulips

case CLOSE:
// bunch of close stuff
break;

case COLOR:
// bunch of color stuff
break;

| plant
strawberry

Design at the Routine Level: Unacceptable Cohesion

Logical Cohesion

Logical cohesion occurs when several operations are stuffed into the same routine and one of the
operations is selected by a control flag that’s passed in.

It’s usually all right, to create a logically cohesive routine if its code consists solely of a
series of if or case statements and calls to other routines.

if the routine’s only function is to dispatch commands and it doesn’t do any of the processing itself, that’s usually a
good design.

The technical term for this kind of routine is “event handler” An event
handler is often used in interactive environments such as the Windows
and Linux GUI environments.

Design at the Routine Level: Unacceptable Cohesion
Coincidental Cohesion

Coincidental cohesion occurs when the operations in a routine have no discernible relationship to each other

It’s hard to convert coincidental cohesion to any better kind of cohesion—you usually
need to do a deeper redesign and reimplementation

void HandleStuff(CORP_DATA & inputRec, int crntQtr, EMP_DATA empRec,
double & estimRevenue, double ytdRevenue, 1int screenX, int screeny,
COLOR_TYPE & newColor, COLOR_TYPE & prevColor, StatusType & status,
int expenseType)

{

int 1 * Fix Car
for (1 =0; i < 100; i++) {

inputRec.revenue[i] = 0; °

inputRec.expense[i] = corpExpense[crntQtr][i]; Bake Ca ke

}
UpdateCorpDatabase(empRec); ¢ Walk DOg
estimRevenue = ytdRevenue * 4.0 / (double) crntQtr; . . .
newcolor = prevcolor; * Fill our Astronaut-Application Form
status = SUCCESS;
if (T =1) {
R) e * Get out of Bed

profit[i] = revenue[i] - expense.typel[i]; .
) * Go the the Movies

else if (expenseType == 2) {
profit[i] = revenue[i] - expense.type2[i];
1

else if (expenseType == 3)
profit[i] = revenue[i] - expense.type3[i];

}

Design at the Routine Level: Bad Coupling

Tight Coupling

Large dependence on the structure of one module by another.

Design at the Routine Level: Good Coupling

Loose Coupling

Modules with loose coupling are more independent and easier to maintain

Design at the Routine Level: Worst Coupling

Content Coupling

A module changes another module’s data

Design at the Routine Level: Not Worst Coupling

Common Coupling

This occurs when all modules reference the same global data structure

Design at the Routine Level: Not Worst Coupling

External Coupling

Modules communicate through an external medium, such as files

Design at the Routine Level: Acceptable Coupling

Control Coupling

Two modules exhibit control coupling if one (" "module A") passes to the other (" module B") a piece of
information that is intended to control the internal logic of the other.

Design at the Routine Level: Acceptable Coupling

Stamp Coupling

Two modules (A" and “'B") exhibit stamp coupling if one passes directly to the other a “composite' piece of
data-that is, a piece of data with meaningful internal structure -such as a record (or structure), array, or
(pointer to) a list or tree.

head

\

<

Object Object Object

next next nextt —— @

A4
A4

tail

Design at the Routine Level: Ideal Coupling

Modules A and B have the lowest possible level of coupling -no
coupling at all -if they have no direct communication and are also
not tied together' by shared access to the same global data area
or external device.

it implies that A and B be implemented, tested, and maintained (almost) completely independently, neither will affect
the behavior of the other

Good Routine Names

A good name for a routine clearly describes everything the routine does

Describe everything the routine does

describe all the outputs and side effects. If a routine computes report
totals and opens an output file, ComputeReportTotals() is not an adequate
name for the routine. ComputeReportTotalsAndOpenOutputFile() is an
adequate name but is too long and silly.

Don’t differentiate routine names solely by number

To name a function, use a description of the return value

describe all the outputs and side effects. If a routine computes report
totals and opens an output file, ComputeReportTotals() is not an adequate
name for the routine. ComputeReportTotalsAndOpenOutputFile() is an
adequate name but is too long and silly.

Establish conventions for common operations

In some systems, it’s important to distinguish among different kinds of
operations. A naming convention is often the easiest and most reliable
way of indicating these distinctions

Avoid meaningless, vague, or wishy washy verbs

Some verbs are elastic, stretched to cover just about any meaning. Routine
names like HandleCalculation() , PerformServices() , OutputUser(),
Processinput(), and DealWithOutput() don’t tell you what the routines do.

Make names of routines as long as necessary

To name a procedure, use a strong verb followed by an object

A procedure with functional cohesion usually performs an operation on an
object. The name should reflect what the procedure does, and an
operation on an object implies a verb-plus object name.

Use opposites precisely

add/remove increment/decrement open/close
begin/end insert/delete show/hide
create/destroy lock/unlock source/target
first/last min/max start/stop
get/put next/previous up/down

get/set old/new

How Long Can a Routine Be?

The theoretical best maximum length is often described as one
screen or one or two pages of program listing, approximately
50 to 150 lines. In this spirit, IBM once limited routines to 50
lines, and TRW limited them to two pages (mccabe 1976)

A large percentage of routines in object-oriented programs will be accessor routines, which will be very short. From
time to time, a complex algorithm will lead to a longer routine, and in those circumstances, the routine should be
allowed to grow organically up to 100-200 lines (A line is a non comment, nonblank line of source code).

How to Use Routine Parameters?

Interfaces between routines are some of the most error-prone areas of a program

One often-cited study by Basiliand Perricone (1984) found that
39 percent of all errors were internal interface errors—errors in
communication between routines.

How to Use Routine Parameters?

Put parameters in input-modify-output order

Instead of ordering parameters randomly or alphabetically, list the parameters that are
input-only first, input-and-output second, and output-only third

Ada Example of Parameters in Input-Modify-Output Order

procedure InvertMatrix(

Ada uses in and out key- —— originalMatrix: in Matrix;
words to make input and resultMatrix: out Matrix
output parameters clear. b -

procedure ChangeSentenceCase(
desiredCase: in StringCase;
sentence: in out Sentence

)3

procedure PrintPageNumber(
pageNumber: 1in Integer;
status: out StatusType
Y5

How to Use Routine Parameters?

If several routines use similar parameters, put the similar parameters in a consistent order

The order of routine parameters can be a mnemonic, and inconsistent order can make
parameters hard to remember.

<cstring>

strncpy

char * strncpy (char * destination, const char * source, size t num);
Copy characters from string

Copies the first num characters of source to destination. If the end of the source C string (which is signaled by a null-
character) is found before num characters have been copied, destination is padded with zeros until a total of num
characters have been written to it.

No null-character is implicitly appended at the end of destination if source is longer than num. Thus, in this case,
destination shall not be considered a null terminated C string (reading it as such would overflow).

destination and source shall not overlap (see memmove for a safer alternative when overlapping).

L. Parameters

destination
Pointer to the destination array where the content is to be copied.

source
C string to be copied.

num
Maximum number of characters to be copied from source.
size_t is an unsigned integral type.

<cstring>

memcpy

void * memcpy (void * destination, const void * source, size t num);
Copy block of memory

Copies the values of num bytes from the location pointed to by source directly to the memory block pointed to by
destination.

The underlying type of the objects pointed to by both the source and destination pointers are irrelevant for this
function; The result is a binary copy of the data.

The function does not check for any terminating null character in source - it always copies exactly num bytes.
To avoid overflows, the size of the arrays pointed to by both the destination and source parameters, shall be at least

num bytes, and should not overlap (for overlapping memory blocks, memmove is a safer approach).

... Parameters

destination
Pointer to the destination array where the content is to be copied, type-casted to a pointer of type voidx.

source
Pointer to the source of data to be copied, type-casted to a pointer of type const void*.

num
Number of bytes to copy.
size_t is an unsigned integral type.

How to Use Routine Parameters?

Use all the parameters

If you pass a parameter to a routine, use it. If you aren’t using it, remove the parameter
from the routine interface.

Unused parameters are correlated with an increased error rate. In
one study, 46 percent of routines with no unused variables had
no errors, and only 17 to 29 percent of routines with more than
one unreferenced variable had no errors (Card, Church, and Agresti1986).

How to Use Routine Parameters?

Put status or error variables last

By convention, status variables and variables that indicate an
error has occurred go last in the parameter list. They are
incidental to the main purpose of the routine, and they are
output-only parameters, so it’s a sensible convention.

How to Use Routine Parameters?

Don’t use routine parameters as working variables

It’s dangerous to use the parameters passed to a routine as working variables. Use local
variables instead.

Java Example of Improper Use of Input Parameters

int Sample(int inputval) {
inputval = inputval * CurrentMultiplier(inputval);
inputval = inputval + CurrentAdder(inputval);

At this point, inputValno |— return inputval;
longer contains the value }
that was input.

Java Example of Good Use of Input Parameters

int Sample(int inputval) {
int workingval = inputval;
workingval workingval * CurrentMultiplier(workingval);
workingval workingval + CurrentAdder(workingval);

If you need t9 use the origi-
nal value of inputVal here e
or somewhere else, it's still return workingval;

available. }

How to Use Routine Parameters?

Document interface assumptions about parameters

If you assume the data being passed to your routine has certain characteristics, document the assumptions as
you make them. Even better than commenting your assumptions, use assertions to put them into code

Whether parameters are Units of numeric Meanings of status codes and Ranges of expected
input-only, modified, or parameters (inches, error values if enumerated values
output-only feet, meters, and so on) types aren’t used

Specific values that should
never appear

How to Use Routine Parameters?

Limit the number of a routine’s parameters to about seven

Seven is a magic number for people’s comprehension

If you find yourself consistently passing more than a few arguments, the coupling
among your routines is too tight. Design the routine or group of routines to reduce the
coupling. If you are passing the same data to many different routines, group the
routines into a class and treat the frequently used data as class data.

How to Use Routine Parameters?

Make sure actual parameters match formal parameters

Formal parameters, also known as “dummy parameters,” are the variables declared in a routine
definition. Actual parameters are the variables, constants, or expressions used in the actual routine calls.

A common mistake is to put the wrong
type of variable in a routine call

SUMMAR

The most important reason for creating a routine is to improve the
intellectual manageability of a program, and you can create a routine for
many other good reasons. Saving space is a minor reason; improved
readability, reliability, and modifiability are better reasons.

Sometimes the operation that most benefits from being put into a routine
of its own is a simple one.

You can classify routines into various kinds of cohesion, but you can make
most routines functionally cohesive, which is best.

The name of a routine is an indication of its quality. If the name is bad and
it’s accurate, the routine might be poorly designed. If the name is bad and
it’s inaccurate, it’s not telling you what the program does. Either way, a
bad name means that the program needs to be changed.

Defensive Programming

The idea is based on defensive driving. In defensive driving, you adopt the mind-set that you’re never sure what
the other drivers are going to do. That way, you make sure that if they do something dangerous you won’t be
hurt. You take responsibility for protecting yourself even when it might be the other driver’s fault.

Defensive Programming

o

d .~ 4 >
. = = Bl . -

-

s =~ et —

Part of the Interstate-90 floating bridge in Seattle sank during a storm
because the flotation tanks were left uncovered, they filled with water, and
the bridge became too heavy to float. During construction, protecting
yourself against the small stuff matters more than you might think.

Defensive Programming

// Fig. 13.1: DivideByZeroNoExceptionHandling.java
// An application that attempts to divide by zero.
import java.util.Scanner;

public class DivideByZeroNoExceptionHandling

// demonstrates throwing an exception when a divide-by-zero occurs
public static int quotient(int numerator, int denominator)

{
return numerator / denominator; // possible division by zero
} // end method quotient

public static void main(String args([])

Scanner scanner = new Scanner(System.in); // scanner for ‘input

System.out.print("Please enter an integer numerator: ");
int numerator = scanner.nextInt();
system.out.print("Please enter an integer denominator: ");

int denominator = scanner.nextInt();

int result = quotient(numerator, denominator);
System.out.printf(
"\nrResult: %d / %d = %d\n", numerator, denominator, result);
} // end main
} // end class DivideByZeroNoExceptionHandling

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Please enter an integer numerator: 100
Please enter an integer denominator: 0
Exception in thread "main" java.lang.ArithmeticException: / by zero
at DivideByZeroNoExceptionHandling.quotient(
DivideByZeroNoExceptionHandling.java:10)
at DivideByzZeroNoExceptionHandling.main(
DivideByZeroNoExceptionHandling.java:22)

Please enter an integer numerator: 100
Please enter an integer denominator: hello
Exception in thread "main" java.util.InputMismatchException
at java.util.Scanner.throwFor(unknown Source)
at java.util.Scanner.next(Unknown Source)
at java.util.Scanner.nextInt(Unknown Source)
at java.util.Scanner.nextInt(Unknown Source)
at DivideByZeroNoExceptionHandling.main(
DivideByZeroNoExceptionHandling.java:20)

Defensive Programming

// Fig. 13.2: DivideByzZerowithExceptionHandling.java

// An exception-handling example that checks for divide-by-zero.
import java.util.InputMismatchException;

import java.util.Scanner;

public class DivideByZeroWwithExceptionHandling Please enter an integer numerator: 100

Please enter an integer denominator: 7
// demonstrates throwing an exception when a divide-by-zero occurs

public static int quotient(int numerator, int denominator) Result: 100 / 7 = 14
throws ArithmeticException

return numerator / denominator; // possible division by zero
} // end method quotient

ublic static void main(String args ;
? (g argsll) Please enter an integer numerator: 100
scanner scanner = new Scanner(System.in); // scanner for input Please enter an integer denominator: 0
boolean continueLoop = true; // determines if more input is needed y : : . S
Exception: java.lang.ArithmeticException: / by zero

do zero is an invalid denominator. Please try again.
{
try // read two numbers and calculate quotient Please enter an integer numerator: 100
Please enter an integer denominator: 7
System.out.print("Please enter an integer numerator: ");
int numerator = scanner.nextInt(); Result: 100 / 7 =
System.out.print("Please enter an integer denominator: ");

int denominator = scanner.nextInt();

int result = quotient(numerator, denominator);
System.out.printf("\nresult: %d / %d = %d\n", numerator,
denominator, result); 5 .
continueLoop = false; // input successful; end looping Please enter an integer numerator: ?00
} // end try Please enter an integer denominator: hello

catch (InputMismatchException inputMismatchException) : : s : ;
Exception: java.util.InputMismatchException

system.err.printf("\ntxception: %s\n", You must enter integers. Please try again.
inputMismatchException); X
scanner.nextLine(); // discard input so user can try again Please enter an integer numerator: 100
System.out.printin(Please enter an integer denominator: 7
"You must enter integers. Please try again.\n");
} // end catch Result: 100 / 7 = 14

catch (ArithmeticException arithmeticException)

System.err.printf("\ntxception: %s\n", arithmeticException);
Ssystem.out.printin(
"Zero is an invalid denominator. Please try again.\n");
} // end catch
} while (continueLoop); // end do...while
} // end main
} // end class DivideByzZerowithExceptionHandling

Protecting Your Program from Invalid Inputs

In school you might have heard the expression, “Garbage in, garbage out.” That expression is essentially
software development’s version of caveat emptor: let the user beware.

For production software, garbage in, garbage out
isn’t good enough. A good program never puts
out garbage, regardless of what it takes in.

Check the values of all data Check the values of all routine Decide how to handle bad
from external sources input parameters inputs

Assertions

An assertion is code that’s used during development—usually a routine or macro—that allows a
program to check itself as it runs

When an assertion is true, that means everything is
operating as expected. When it’s false, that means it has
detected an unexpected error in the code.

Assertions are especially useful in large, complicated programs and in
high-reliability programs. They enable programmers to more quickly
flush out mismatched interface assumptions, errors that creep in
when code is modified, and so on.

Assertions

An assertion is code that’s used during development—usually a routine or macro—that allows a
program to check itself as it runs

An assertion usually takes two arguments: a Boolean expression that describes
the assumption that’s supposed to be true, and a message to display if it isn’t.

; . Enter a number between 0 and 10: 5
// Fig. 13.9: AssertTest.java You entered 5

// Demonstrates the assert statement
import java.util.Scanner;

public class AssertTest

; 3 3 3 7 Enter a number between 0 and 10: 50
pUb11c static void ma1n(String args[]) Exception in thread "main" java.lang.AssertionError: bad number: 50
{ at AssertTest.main(AssertTest.java:15)

Scanner input = new Scanner(System.in);

System.out.print("Enter a number between 0 and 10: ");
int number = input.nextInt();

// assert that the absolute value is >= 0
assert (number >= 0 &% number <= 10) : "bad number:

+ number;

System.out.printf("You entered %d\n", number);
} // end main
} // end class AssertTest

Assertions

An assertion is code that’s used during development—usually a routine or macro—that allows a
program to check itself as it runs

You use assertions primarily for debugging and identifying logic errors in an
application. They are comment-like code

You must explicitly enable assertions when executing a program, because they
reduce performance and are unnecessary for the program’s user.

Users should not encounter any Assertion Errors through normal execution of a
properly written program. Such errors should only indicate bugs in the
implementation. E.g., Debug mode vs. Release mode

Assertions

An assertion is code that’s used during development—usually a routine or macro—that allows a
program to check itself as it runs

That an input parameter’s value falls within its expected range (or an output
parameter’s value does)

That a file or stream is open (or closed) when a routine begins executing (or when it
ends executing)

That a file or stream is at the beginning (or end) when a routine begins executing (or
when it ends executing)

That a file or stream is open for read-only, write-only, or both read and write

That the value of an input-only variable is not changed by a routine

That a pointer is non-null

That an array or other container passed into a routine can contain at least X number of
data elements

That a table has been initialized to contain real values

That a container is empty (or full) when a routine begins executing (or when it finishes)
That the results from a highly optimized, complicated routine match the results from a
slower but clearly written routine

Assertions: Guidelines for Using Assertions

Use error-handling code for conditions you expect to occur;
use assertions for conditions that should never occur

Assertions check for conditions that should never occur. Error-handling code
checks for off-nominal circumstances that might not occur very often, but that
have been anticipated by the programmer who wrote the code and that need
to be handled by the production code. Error handling typically checks for bad

input data; assertions check for bugs in the code.

Assertions: Guidelines for Using Assertions

Avoid putting executable code into assertions

Putting code into an assertion raises the possibility that the compiler will eliminate the code
when you turn off the assertions.

Visual Basic Example of a Dangerous Use of an Assertion
Debug.Assert(PerformAction()) ' Couldn't perform action

Visual Basic Example of a Safe Use of an Assertion

actionPerformed = PerformAction()

Debug.Assert(actionPerformed) ' Couldn't perform action

Assertions: Guidelines for Using Assertions

Do not use assertions for argument checking in public
methods

Argument checking is typically part of the published specifications (or contract) of a method, and
these specifications must be obeyed whether assertions are enabled or disabled

Erroneous arguments should result in an appropriate
runtime exception (such as lllegalArgumentException,
IndexOutOfBoundsException, or NullPointerException)

// Enforce specified precondition in public method
(rate <= 0 rate > MAX
S ‘

if

t the !
— the ref t el L (wl I I - e
a I e re A { frame: sec > 5
@throws IllegalArgumentException if rate <= 0 o1 * @param interval refresh interval in milliseconds.
te > MAX REFE e ,
EFRI [%/

A .)) - private void setRefreshInterval (int interval)
ublic void setRefreshRate (int rate)

// Confirm adherence to precondition in nonpublic method

REFRESH RATE) assert interval > 0 && interval <= 1000/MAX RE

W v alls gumel LWXCe e ale H
setRefreshInterval (1000/rate) ; ... // Set the refresh interval

.JFRESH RATE : interval;

Assertions: Guidelines for Using Assertions

Use Assertions for Internal Invariants

An invariant is a condition that can be relied upon to be true during execution of a program, or
during some portion of it. It is a logical assertion that is held to always be true during a certain
phase of execution. For example, a loop invariant is a condition that is true at the beginning and

end of every execution of a loop.

1if (1L % 3 = 0) 4
] elses 9F (2 5 3 == 1)
} else { // We know (i

}

o)
°

3

2)

1T (T % ==)) {
 else If 4 % 3 = 1) 1

} else {
assert 1 % 3 = 2 : 1i;

Assertions: Guidelines for Using Assertions

Use Assertions for Internal Invariants

An invariant is a condition that can be relied upon to be true during execution of a program, or
during some portion of it. It is a logical assertion that is held to always be true during a certain
phase of execution. For example, a loop invariant is a condition that is true at the beginning and
end of every execution of a loop.

switah (sait) {
cage Suit.CLUBS?

break;
Assumption: the suit variable will
have one of only four values. To test

this assumption, you should add the brééf(;
following default case:

case Suit.DIAMONDS:

case Suit.HEARTS:
deranls

assert false : suit: break:;

case Suit.SPADES:

Assertions: Guidelines for Using Assertions

Use Assertions for Control Flow Invariants

place an assertion at any location you assume will not be reached

volrd fooil) {
For Kssx) {
B (ses)
return;

}

// Execution should never reach this point!!!

}

void foo () {
taE Lo end of
1E (:.55)
return;

}

assert false; // Execution should never reach this point!

Assertions: Guidelines for Using Assertions

Use assertions to document and verify preconditions and postconditions

Visual Basic Example of Using Assertions to Document Preconditions and

Preconditions are the properties that the client Postconditions
code of a routine or class promises will be true Private Function velocity (_
. . . . Byval latitude As Single, _
before it calls the routine or instantiates the Byval Tongitude As Single, _
9 om0 . y Byval elevation As Single _
object. Preconditions are the client code’s) As single
obligations to the code it calls. ' oreconditions

Debug.Assert (-90 <= latitude And latitude <= 90)
Debug.Assert (0 <= longitude And longitude < 360)

Postconditions are the properties that the Debug.Assert (-500 <= elevation And elevation <= 75000)
routine or class promises will be true when it

concludes executing. Postconditions are the S pnEesanarven
routinels or Classls Obligations tO the COde that Debug.Assert (0 <= returnVelocity And returnvelocity <= 600)

uses It ' return value

Velocity = returnvelocity
End Function

If the variables latitude, longitude, and elevation
were coming from an external source, invalid
values should be checked and handled by error-
handling code rather than by assertions.

Assertions: Guidelines for Using Assertions

For highly robust code, assert and then handle the error anyway

Visual Basic Example of Using Assertions to Document Preconditions and
Postconditions
Private Function Velocity (_
ByRef latitude As Single, _
ByRef longitude As Single, _
ByRef elevation As Single _
) As Single
' Preconditions
Here is the assertion code. —>I:Debug.Assert (-90 <= latitude And latitude <= 90)

Debug.Assert (0 <= longitude And longitude < 360)
Debug.Assert (-500 <= elevation And elevation <= 75000)

' Sanitize input data. Vvalues should be within the ranges asserted above,
' but if a value is not within its valid range, it will be changed to the
' closest legal value
Hereis the code that handlest—s [If (latitude < -90) Then
bad input data at run time. Tatitude = -90
ElselIf (Tlatitude > 90) Then
Tatitude = 90
End If
If (longitude < 0) Then
Tongitude = 0
ElseIf (longitude > 360) Then

Error-Handling Techniques

Return a neutral value

Sometimes the best response to bad data is to continue operating and simply
return a value that’s known to be harmless.

A numeric computation might return O.

A string operation might return an empty string, or a pointer operation might
return an empty pointer.

A drawing routine that gets a bad input value for color in a video game might
use the default background or foreground color.

Error-Handling Techniques

Substitute the next piece of valid data

When processing a stream of data, some circumstances call for simply returning

the next valid data.

If you're reading records from a database
and encounter a corrupted record, you
might simply continue reading until you
find a valid record.

If you’re taking readings from a
thermometer 100 times per second and
you don’t get a valid reading one time, you
might simply wait another 1/100th of a

second and take the next reading.

Error-Handling Techniques

Return the same answer as the previous time

p"
s

\

|

Error-Handling Techniques

Substitute the closest legal value

In some cases, you might choose to return the closest legal value. This is often a
reasonable approach when taking readings from a calibrated instrument

The thermometer might be calibrated Cars use this approach to error handling
between 0 and 100 degrees Celsius, for whenever going back. Since a

example. If you detect a reading less than speedometer doesn’t show negative

0, you can substitute 0, which is the closest speeds, when it simply shows a speed of
legal value. O—the closest legal value.

Error-Handling Techniques

Log a warning message to a file

When bad data is detected, you might choose to log a warning message to a
file and then continue on.

This approach can be used in conjunction
with other techniques like substituting the
closest legal value or substituting the next
piece of valid data.

If you use a log, consider whether you can
safely make it publicly available or whether
you need to encrypt it or protect it some
other way.

Error-Handling Techniques

Return an Error Code

You could decide that only certain parts of a system will handle errors. Other
parts will not handle errors locally; they will simply report that an error has
been detected and trust that some other routine higher up in the calling
hierarchy will handle the error.

m Set the value of a status variable

m Return status as the function’s return value

m Throw an exception by using the language’s built-in
exception mechanism

Call an error-processing routine/object

Centralize error handling in a global error-handling routine or error-handling object.

Error-Handling Techniques

Display an error message wherever the error is encountered

This approach minimizes error-handling overhead; however, it does have the potential to spread
user interface messages through the entire application-how to separate Ul. Tight coupling

Beware of telling a potential attacker of the system
too much. Attackers sometimes use error messages to
discover how to attack a system.

Error-Handling Techniques
Shutdown

Some systems shut down whenever they detect an error. This approach is useful
in safety-critical applications.

Error-Handling Techniques: Correctness vs. Robustness

Correctness means never returning an inaccurate result;
returning no result is better than returning an inaccurate result.

Robustness means always trying to do something that will allow
the software to keep operating, even if that leads to results that
are inaccurate sometimes.

Safety-critical applications tend to favor Consumer applications tend to favor robustness
correctness to robustness. It is better to return no to correctness. Any result whatsoever is usually
result than to return a wrong result. e.g. the better than the software shutting down.

radiation machine

Exceptions

An exception is an event, which occurs during the execution of a program, that
disrupts the normal flow of the program’s instructions.

If code in one routine encounters an unexpected condition that it doesn’t
know how to handle, it throws an exception, essentially throwing up its
hands and yelling, “l don’t know what to do about this—I sure hope
somebody else knows how to handle it!”

Code that has no sense of the context of an error can return control to other parts of the system
that might have a better ability to interpret the error and do something useful about it.

Exceptions

An exception is an event, which occurs during the execution of a program, that
disrupts the normal flow of the program’s instructions.

Exception

Attribute C++ Java Visual Basic
Try-catch support yes yes yes
Try-catch-finally no yes yes

support

What can be
thrown

Effect of uncaught
exception

Exceptionsthrown
must be defined
in class interface

Exceptions caught
must be defined
in class interface

Exception object or
object derived from

Exception class; object

pointer; object refer-
ence; data type like
string or int

Invokes std::unex-
pected(), which by
default invokes
std::terminate(),
which by default
invokes abort()

No

No

Exception object or
object derived from
Exception class

Terminates thread
of execution if
exception is a
“checked excep-
tion”; no effect if
exception is a
“runtime
exception”

Yes

Yes

Exception object or
object derived from
Exception class

Terminates
program

No

No

Throwable

i She

. Exception' » Efror
Y il il
Runtimli.Exception AWTError ThreadDeath
b\I | 1 l

ClassCastException

I0Exception VirtualMachineError

NullPointerException ArithmeticException

IndexOutOfBoundsException NoSuchElementException

7 ?

ArraylndexOutOfBoundsException InputMismatchException |

Exceptions

Use exceptions to notify other parts of the program about
errors that should not be ignored

The benefit of exceptions is their ability to signal error conditions in such a way that they
cannot be ignored (Meyers 1996)

Other approaches to handling errors create the possibility that
an error condition can propagate through a code base
undetected. Exceptions eliminate that possibility.

Exceptions

Throw an exception only for conditions that are truly
exceptional

Exceptions should be reserved for conditions that are truly exceptional—in other words, for
conditions that cannot be addressed by other coding practices

Exceptions represent a tradeoff between a powerful way to
handle unexpected conditions on the one hand and increased
complexity on the other.

Exceptions

Don’t use an exception to pass the buck

If an error condition can be handled locally, handle it locally.
Don’t throw an uncaught exception in a section of code if you
can handle the error locally.

Avoid throwing exceptions in constructors and destructors
unless you catch them in the same place

The rules for how exceptions are processed become very complicated very quickly when
exceptions are thrown in constructors and destructors.

Exceptions

Throw exceptions at the right level of abstraction

A routine should present a consistent abstraction in its interface, and so should a class. The
exceptions thrown are part of the routine interface, just like specific data types are.

Bad Java Example of a Class that Throws an Exception at an Inconsistent Level
: a of Abstraction
“ o

L class Employee {

HORROR Sha
Here is the declaration of the—» public TaxId GetTaxId() throws EOFException {
exception that’s at an incon-
sistent level of abstraction. }

}

Good Java Example of a Class that Throws an Exception at a Consistent Level
of Abstraction

class Employee {

Here is the declaration of —— public TaxId GetTaxId() throws EmployeeDataNotAvailable {
the exception that contrib-
utes to a consistent level }
of abstraction.

Exceptions

Include in the exception message all information that led
to the exception

Be sure the message contains the information needed to understand why the exception was thrown.

If the exception was thrown because of an array index error, be
sure the exception message includes the upper and lower array
limits and the value of the illegal index.

Exceptions
Avoid empty catch blocks

Either the code within the try block is wrong because it raises an exception for no reason, or the
code within the catch block is wrong because it doesn’t handle a valid exception.

Good Java Example of Ignoring an Exception

Bad Java Example of Ignoring an Exception ’
try

try {

é P
CODING // lots of code
HORROR

// lots of code

} catch (AnException exception) {
LogError("Unexpected exception”);

}

} catch (AnException exception) {

}

Know the exceptions your library code throws

If you’re working in a language that doesn’t require a routine or class to define the exceptions
it throws, be sure you know what exceptions are thrown by any library code you use.

Exceptions

Consider building a centralized exception reporter

Exceptions provide the means to separate the details of what to do when something out of the
ordinary. Error detection, reporting, and handling often lead to confusing spaghetti code

readFile {
open the file;,
determine its size;
allocate that much memory;,
read the file into memory;,

close the file,

errorCodeType readFile {

initialize errorCode = 0;

open the file,;
if (theFileIsOpen) {
determine the length of the file;
if (gotTheFileLength) ({
allocate that much memory,

if (gotEnoughMemory) (

read the file into memory,

if (readFailed) {

errorCode = -1;
)
} 1se
errorCod =2;
}
} else {
errorCode = =-3;
}
close the file;
if (theFileDidntClose && errorCode ==
errorCode = =4;

} else {
errorCode = errorCode and -4;
}
} else {

errorCode = =5;

return errorCode;

0)

readFile {

kry 4
open the file;
determine its size;
allocate that much memory,
read the file into memory;,
close the file,

} catch (fileOpenFailed) {
doSomething,

} catch (sizeDeterminationFailed)

doSomething,

} catch (memoryAllocationFailed)

doSomething,

} catch (readFailed) {
doSomething,

} catch (fileCloseFailed) {
doSomething,

{

{

Exceptions

Consider building a centralized exception reporter

Exceptions provide the means to separate the details of what to do when something out of the
ordinary. Error detection, reporting, and handling often lead to confusing spaghetti code

Visual Basic Example of a Centralized Exception Reporter, Part 1 Visual Basic Example of a Centralized Exception Reporter, Part 2

Sub ReporteException(_ Try
Byval className, _

Byval thisException As Exception _ Catch except1on9b]ect As Exception . .
) Reportexception(CLASS_NAME, exceptionObject)

. . End Try
Dim message As String

Dim caption As String

message = "Exception: " & thisException.Message & "." & Controlchars.criLf & _
“Class: " & className & controlchars.crif & _
"Routine: " & thiseException.TargetSite.Name & ControlcChars.crLf

caption = "Exception”

MessageBox.Show(message, caption, MessageBoxButtons.OK, _
MessageBoxIcon.Exclamation)

End Sub

r i
C . 1
' Graphical !
! User Interface !
lempmmnmen . '
frmmmmee———————
] - 1
i Command !
1 Line Interface
]
e e '
frmmemme——————
i C i
i Real-time !
+ DataFeed |
I
T —————— i
o= mm—n——-————
1 . 1
: External !
: Files H
)]
B o e -]
pr===========-q
) -]
1 Other external !
- objects -
1 1
P o - 1

Data here is

assumed to be dirty

and untrusted.

Barricade Your Program to Contain the Damage Caused by Errors

Barricades are a damage-containment strategy. The reason is similar to that for having isolated compartments in

the hull of a ship.
Internal Internal
Class 1 Class 2
Internal | | Intenal
: Validation ; Class 3 Class 4
i Clss1
—— v
: ressassnssaies i Class 5 Class 6
e==of2 ", i Validation
"Rt Clis2
Internal Internal
lllllllllllllllllll (.:];lgg 7 (q‘la.gs 8
Validation
i Classn Internal | | Internal
L N (ﬂ-l& g (-:lass 10
Internal Internal
Class 11 Classn

These classes are responsible
for cleaning the data. They
make up the barricade.

These classses can
assume data is clean
and trusted.

Debugging Aids

Don’t Automatically Apply Production Constraints to the Development Version

A common programmer blind spot is the assumption that limitations of the production software apply to
the development version

Be willing to trade speed and resource usage during
development in exchange for built-in tools that can make
development go more smoothly.

Introduce Debugging Aids Early

The earlier you introduce debugging aids, the more they’ll help

Debugging Aids

Use Offensive Programming

Exceptional cases should be handled in a way that makes them obvious during development and
recoverable when production code is running

Make sure assert/abort the program. Don’t allow programmers to get into the habit of

just hitting the Enter key to bypass a known problem. Make the problem painful enough

that it will be fixed.

 Completely fill any memory allocated so that you can detect memory allocation errors.

* Completely fill any files or streams allocated to flush out any file-format errors.

» Be sure the code in each case statement’s default or else clause fails hard (aborts the
program) or is otherwise impossible to overlook.

* Fill an object with junk data just before it’s deleted.

* Set up the program to e-mail error log files to yourself so that you can see the kinds of

errors that are occurring in the released software, if that’s appropriate for the kind of

software you’re developing.

Debugging Aids

Plan to Remove Debugging Aids

If you’re writing code for your own use, it might be fine to leave all the debugging code in the program.
If you’re writing code for commercial use, the performance penalty in size and speed can be prohibitive.

Use version-control tools and Use a built-in Write your own

build tools like ant and make preprocessor preprocessor Use debugging stubs

Determining How Much Defensive Programming to
Leave in Production Code

Leave in code that checks Leave in code that helps the Log errors for your Make sure that error messages
for important errors program crash gracefully technical support personnel you leave in are friendly

Being Defensive About Defensive Programming

Think about where you need to be defensive, and set
your defensive programming priorities accordingly

SUMMAR\

Production code should handle errors in a more sophisticated way than “garbage in, garbage out.”

Defensive-programming techniques make errors easier to find, easier to fix, and less damaging to
production code.

Assertions can help detect errors early, especially in large systems, high-reliability systems, and fast-
changing code bases.

The decision about how to handle bad inputs is a key error-handling decision and a key high-level
design decision.

Exceptions provide a means of handling errors that operates in a different dimension from the
normal flow of the code. They are a valuable addition to the programmer’s intellectual toolbox when
used with care, and they should be weighed against other error-processing techniques

Constraints that apply to the production system do not necessarily apply to the development
version. You can use that to your advantage, adding code to the development version that helps to
flush out errors quickly.

