
SWEN 6301 Software Construction
Module 6: Variables

Ahmed Tamrawi

Copyright notice: 1- care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.
2- many slides are adopted with permission from Ian Sommerville and Mustafa Misir ‘s lecture notes on Software Engineering course and Modern Software Development Technology course.



Outline

• Data Literacy
• Variable Initialization
• Scope
• One Variable = One Purpose



Data Literacy

• The first step in creating effective data is knowing which kind of data 
to create.
• A good repertoire of data types is a key part of a programmer’s 

toolbox.



Variable Initialization

• Improper data initialization is one of the most fertile sources of error 
in computer programming.
• Developing effective techniques for avoiding initialization problems 

can save a lot of debugging time.



Variable Initialization

• The problems with improper initialization stem from a variable’s 
containing an initial value that you do not expect it to contain.
• This can happen for any of several reasons:
• The variable has never been assigned a value. Its value is whatever bits 

happened to be in its area of memory when the program started.
• The value in the variable is outdated. The variable was assigned a value at 

some point, but the value is no longer valid.
• Part of the variable has been assigned a value and part has not. The case of 

classes instances.



Variable Initialization

• Initializing variables as they’re declared is an inexpensive form of 
defensive programming. It’s a good insurance policy against 
initialization errors.
• The example below ensures that studentGrades will be reinitialized 

each time you call the routine that contains it.

Initialize each variable as it ’s declared



Variable Initialization

• Some languages, including Visual Basic, don’t 
support initializing variables as they’re
declared.

• That can lead to coding styles like the following
one, in which declarations are grouped
together and then initializations are grouped 
together all far from the first actual of the 
variables.

Initialize each variable close to where it ’s first used



Variable Initialization

• A better practice is to initialize variables as close as possible to where 
they’re first used:

Initialize each variable close to where it ’s first used



Variable Initialization

• By the time execution of the first example gets
to the code that uses done, done could have
been modified. If that’s not the case when you 
first write the program, later modifications
might make it so.
• Throwing all the initializations together creates

the impression that all the variables are used
throughout the whole routine—when in fact 
done is used only at the end.

Initialize each variable close to where it ’s first used



Variable Initialization

• A declaration establishes a variable’s type.
• A definition assigns the variable a specific value.
• In languages that support it, such as C++ and Java, variables should be 

declared and defined close to where they are first used.
• Ideally, each variable should be defined at the same time it’s declared,

as shown next:

Ideally, declare and define each variable close to where it ’s first used



Variable Initialization

• By declaring a variable to be final in Java or const in C++, you can 
prevent the variable from being assigned a value after it’s initialized.
• The final and const keywords are useful for defining class constants, 

input-only parameters, and any local variables whose values are 
intended to remain unchanged after initialization.

Use final or const when possible



Variable Initialization

• The variables i, j, k, sum, and total are often counters or 
accumulators.
• A common error is forgetting to reset a counter or an accumulator 

before the next time it’s used.

Pay special attention to counters and accumulators



Variable Initialization

• Just as a routine’s variables should be initialized within each routine, a 
class’s data should be initialized within its constructor.
• If memory is allocated in the constructor, it should be freed in the 

destructor.

Initialize a class’s member data in its constructor



Variable Initialization

• Ask yourself whether the variable will ever need to be reinitialized, 
either because a loop in the routine uses the variable many times or 
because the variable retains its value between calls to the routine and 
needs to be reset between calls.
• If it needs to be reinitialized, make sure that the initialization 

statement is inside the part of the code that’s repeated.

Check the need for reinitialization



Variable Initialization

• Another valuable form of initialization is checking input parameters 
for validity. Before you assign input values to anything, make sure the 
values are reasonable.
• Remind you what? Assertion, Exception

Check input parameters for validity



Scope

• Scope is a way of thinking about a variable’s celebrity status: how 
famous is it?
• A variable with limited or small scope is known in only a small area of a 

program.



Scope

• Different languages handle scope in different ways.
• In C++ and similar languages, a variable can be visible to a block (a 

section of code enclosed in curly brackets), a routine, a class (and 
possibly its derived classes), or the whole program (or a package).



Scope: Guidelines

• The code between references to a variable is a “window of 
vulnerability.”
• In the window, new code might be added, inadvertently altering the 

variable, or someone reading the code might forget the value the 
variable is supposed to contain.
• It’s always a good idea to localize references to variables by keeping

them close together.

Localize References to Variables



Scope: Guidelines

• One method of measuring how close together the references to a 
variable are is to compute the “span” of a variable. Here’s an example:

• Two lines come between the first reference to a and the second, so a 
has a span of 2. One line comes between the two references to b, so b 
has a span of 1, and c has a span of 0.

Localize References to Variables



Scope: Guidelines

• The average span is computed by averaging the individual spans. For b, 
(1+0)/2 equals an average span of 0.5.

• When you keep references to variables close together, you enable the 
person reading your code to focus on one section at a time.
• If the references are far apart, you force the reader to jump around in the 

program. Thus the main advantage of keeping references to variables 
together is that it improves program readability.

Localize References to Variables



Scope: Guidelines

• A concept that’s related to variable span is variable “live time”, the 
total number of statements over which a variable is live.
• A variable’s life begins at the first statement in which it’s referenced; 

its life ends at the last statement in which it’s referenced.
• Unlike span, live time isn’t affected by how many times the variable is 

used between the first and last times it’s referenced. If the variable is 
first referenced on line 1 and last referenced on line 25, it has a live 
time of 25 statements.

Keep Variables “Live” for as Short a Time as Possible



Scope: Guidelines
Keep Variables “Live” for as Short a Time as Possible



Scope: Guidelines

• As with span, the goal with respect to live time is to keep the number 
low, to keep a variable live for as short a time as possible.
• And as with span, the basic advantage of maintaining a low number is 

that it reduces the window of vulnerability.
• You reduce the chance of incorrectly altering a variable between the 

places in which you intend to alter it.

Keep Variables “Live” for as Short a Time as Possible



Scope: Guidelines

• Keeping the live time short is that it gives you an accurate picture of 
your code.
• If a variable is assigned a value in line 10 and not used again until line 

45, the very space between the two references implies that the 
variable is used between lines 10 and 45.
• If the variable is assigned a value in line 44 and used in line 45, no 

other uses of the variable are implied, and you can concentrate on a 
smaller section of code when you’re thinking about that variable.

Keep Variables “Live” for as Short a Time as Possible



Scope: Guidelines

• A short live time makes your code more readable.
• The fewer lines of code a reader has to keep in mind at once, the 

easier your code is to understand.
• Likewise, the shorter the live time, the less code you have to keep on 

your screen when you want to see all the references to a variable 
during editing and debugging.
• Short live times are useful when splitting a large routine into smaller 

routines.
• If references to variables are kept close together, it’s easier to refactor 

related sections of code into routines of their own.

Keep Variables “Live” for as Short a Time as Possible



Scope: Guidelines

• You can formalize the concept of live time by counting the number of 
lines between the first and last references to a variable (including 
both the first and last lines).

Measuring the Live Time of a Variable



Scope: Guidelines
Measuring the Live Time of a Variable



Scope: Guidelines

• Intuitively, the second example seems better than the first because 
the initializations for the variables are performed closer to where the 
variables are used.
• Avoid global variables!

Measuring the Live Time of a Variable



Scope: Guidelines

• Doing this improves the chance that when you modify the loop, you’ll 
remember to make corresponding modifications to the loop 
initialization.
• Later, when you modify the program and put another loop around

the initial loop, the initialization will work on each pass through the 
new loop rather than on only the first pass.

Initialize variables used in a loop immediately before the loop



Scope: Guidelines

• You might have experienced the frustration of trying to figure out 
where a variable was assigned its value. The more you can do to 
clarify where a variable receives its value, the better.
• Languages like C++ and Java support variable initializations like these:

Don’t assign a value to a variable until just before the value is used



Scope: Guidelines

• The following examples show a routine for summarizing daily receipts 
and illustrate how to put references to variables together so that 
they’re easier to locate.

Group related statements

Good or bad?



Scope: Guidelines

• Good or bad? Good: more understandable, with groups

• When the code is broken up, the two blocks are each shorter than the 
original block and individually contain fewer variables.
• They’re easier to understand, and if you need to break this code out into

separate routines, the shorter blocks with fewer variables will promote
better-defined routines.

Group related statements



Scope: Guidelines

• All other things being equal, a variable in a shorter routine will tend 
to have smaller span and live time than a variable in a longer routine. 
By breaking related statements into separate, smaller routines, you 
reduce the scope that the variable can have - Remember cohesion!

Break groups of related statements into separate routines



Scope: Guidelines

• Part of minimizing the scope of a variable is keeping it as local as possible.
• It is much more difficult to reduce the scope of a variable that has had a 

large scope than to expand the scope of a variable that has had a small 
scope!
• It’s harder to turn a protected data member into a private data member 

than vice versa.
• For that reason, when in doubt, favor the smallest possible scope for a 

variable: local to a specific loop, local to an individual routine, then private 
to a class, then protected, then package (if your programming language 
supports that), and global only as a last resort.

Begin with most restricted visibility, and expand the variable’s scope only if necessary



One Variable = One Purpose

• It’s sometimes tempting to use one variable in two different places for
two different activities.
• Usually, the variable is named inappropriately for one of its uses or a 

“temporary” variable is used in both cases

Use each variable for one purpose only!

What is the relationship
between temp in the first few
lines and temp in the last few?



One Variable = One Purpose
Use each variable for one purpose only!



One Variable = One Purpose

• Another way in which a variable can be used for more than one 
purpose is to have different values for the variable mean different 
things.
• For example:
• The value in the variable pageCount might represent the number of pages 

printed, unless it equals -1, in which case it indicates that an error has 
occurred.
• What are types of these two parameters?
• pageCount normally indicates the number of pages; it’s an integer.
• When pageCount is -1, however, it indicates that an error has occurred; the 

integer is moonlighting as a boolean!

Avoid variables with hidden meanings - Hybrid Coupling in variables



Variable Names



Outline

• Good Names
• Naming Specific Types of Data
• Naming Conventions
• Standardized Prefixes
• Creating Short Readable Names
• Names to Avoid



Good Names

A variable and its name are essentially the same thing
• Consequently, the goodness or badness of a variable is largely 

determined by its name. It should be: Readable, Memorable, and 
Appropriate!



Good Names

The most important consideration in naming a variable is that the 
name fully and accurately describe the entity the variable represents
• An effective technique for coming up with a good name is to state in 

words what the variable represents!
• Often that statement itself is the best variable name.
• It’s easy to read because it doesn’t contain cryptic abbreviations, and it’s 

unambiguous.
• It’s a full description of the entity, so it won’t be confused with something 

else.
• It’s easy to remember because the name is similar to the concept.



Good Names

• A variable that represents the number of seats in a stadium would be 
numberOfSeatsInTheStadium.
• A variable that represents the maximum number of points scored by a 

country’s team in any modern Olympics would be 
maximumNumberOfPointsInModernOlympics.
• What do you think about these variable names?



Good Names

• Characteristics of these names?
• Easy to decipher. Simply read them.
• A bit long to be practical!



Good Names

A good name generally speaks to the problem rather than the solution.

• A good name tends to express the what more than the how.
• In general, if a name refers to some aspect of computing rather than to the 

problem, it’s a how rather than a what.

• A record of employee data could be called inputRec or employeeData?
• inputRec is a computer term—input and record.
• employeeData refers to the problem domain rather than the computing universe.

• bitFlag vs printerReady?
• Similarly, for a bit field indicating printer status, bitFlag is a more computer-ish name than 
printerReady. In an accounting application, calcVal is more computer-ish than sum.



Good Names: Length

• The optimum length for a name seems to be somewhere between the 
lengths of x and maximumNumberOfPointsInModernOlympics.
• Names that are too short don’t convey enough meaning. The problem 

with names like x1 and x2 is that even if you can discover what x is, 
you won’t know anything about the relationship between x1 and x2.
• Names that are too long are hard to type and can harm the visual 

structure of a program – Auto Completion?



Good Names: Length

Variable names that are too long, too short and just right



Good Names: Length

• Are short variable names always bad?
• No, not always.

• When you give a variable a short name like i, the length itself says 
something about the variable—namely, that the variable is a scratch 
value with a limited scope of operation.
• A programmer reading such a variable should be able to assume that 

its value isn’t used outside a few lines of code.
• When you name a variable i, you’re saying, “This variable is a loop 

counter or an array index and doesn’t have any significance outside 
these few lines of code.”



Good Names: Length

• Longer names are better for rarely used variables or global variables
• Shorter names are better for local variables or loop variables
• Short names are subject to many problems, however, and some 

careful programmers avoid them altogether as a matter of defensive-
programming policy.



Good Names: Qualifiers

• Many programs have variables that contain computed values: totals, averages,
maximums, and so on.
• If you modify a name with a qualifier like Total, Sum, Average, Max, Min, Record,

String, or Pointer, put the modifier at the end of the name.
• This practice offers several advantages

• The most significant part of the variable name, the part that gives the variable most of its 
meaning, is at the front, so it’s most prominent and gets read first.

• Avoid the confusion you might create if you were to use both totalRevenue and revenueTotal
in the same program.

• Set of names like revenueTotal, expenseTotal, revenueAverage, and expenseAverage has a 
pleasing symmetry.

• The consistency improves readability and eases maintenance!



Good Names: Qualifiers

• NumCustomers vs CustomerNum?
• Exception: Num

• Placed at the beginning of a variable name, Num refers to a total: numCustomers is the total
number of customers.

• Placed at the end of the variable name, Num refers to an index: customerNum is the number 
of the current customer.

• The s at the end of numCustomers is another tip-off about the difference in meaning.
• But, because using Num so often creates confusion, it’s probably best to sidestep the whole 

issue by using Count or Total to refer to a total number of customers and Index to refer to a 
specific customer.

• Thus, customerCount is the total number of customers and customerIndex refers to a 
specific customer.



Good Names: Opposites

Use opposites precisely.
• Using naming conventions for opposites helps

consistency, which helps readability.
• Pairs like begin/end are easy to understand and

remember.
• Pairs that depart from common-language 

opposites tend to be hard to remember and are
therefore confusing.



Naming Specific Types of Data

• In addition to the general considerations in naming data, special 
considerations come up in the naming of specific kinds of data.
• loop variables
• status variables
• temporary variables
• boolean variables
• enumerated types
• constants



• Guidelines for naming variables in loops have arisen because loops
are such a common feature of computer programming. The names i, j,
and k are customary:

67

Naming Loop Indexes



• If a variable is to be used outside the loop, it should be given a name
more meaningful than i, j, or k.

68

Naming Loop Indexes



Naming Loop Indexes

• If the loop is longer than a few lines, it’s easy to forget what i is 
supposed to stand for and you’re better off giving the loop index a 
more meaningful name.
• Because code is so often changed, expanded, and copied into other 

programs, many experienced programmers avoid names like i
altogether.



Naming Loop Indexes

• One common reason loops grow longer is that they’re nested.
• If you have several nested loops, assign longer names to the loop 

variables to improve readability.



Naming Loop Indexes

• Carefully chosen names for loop-index variables avoid the common 
problem of index cross-talk: saying i when you mean j and j when you mean 
i.
• They also make array accesses clearer:

• score[teamIndex][eventIndex] is more informative than score[i][j]
• If you have to use i, j, and k, don’t use them for anything other than loop

indexes for simple loops—the convention is too well established, and
breaking it to use them in other ways is confusing.
• The simplest way to avoid such problems is simply to think of more 

descriptive names than i, j, and k.



Naming Status Variables

Think of a better name than flag for status variables
• Status variables describe the state of your program.
• It’s better to think of flags as status variables.
• A flag should never have flag in its name because that doesn’t give 

you any clue about what the flag does.
• For clarity, flags should be assigned values and their values should be 

tested with enumerated types, named constants, or global variables 
that act as named constants.



Naming Status Variables

• Flags with good or bad names?



Naming Status Variables

• Statements like statusFlag = 0x80 give you no clue about what the 
code does unless you wrote the code or have documentation that 
tells you both what statusFlag is and what 0x80 represents



Naming Status Variables

• Named constants and enumerated types to set up the values used in 
the example



Naming Enumerated Types

• When you use an enumerated type, you can 
ensure that it’s clear that members of the type all 
belong to the same group by using a group prefix, 
such as Color_, Planet_, or Month_.
• Any comments?



Naming Temporary Variables

• Temporary variables are used to hold intermediate results of calculations,
as temporary placeholders, and to hold housekeeping values.

• They’re usually called temp, x, or some other vague and non-descriptive
name.

• In general, temporary variables are a sign that the programmer does not
yet fully understand the problem.
• Moreover, because the variables are officially given a “temporary” status,

programmers tend to treat them more casually than other variables, 
increasing the chance of errors.



Naming Temporary Variables

Be cautious of “temporary” variables
• It’s often necessary to preserve values temporarily.
• But in one way or another, most of the variables in your program are 

temporary. Calling a few of them temporary may indicate that you 
aren’t sure of their real purposes. Consider the following example:



Naming Temporary Variables

Be cautious of “temporary” variables
• It’s fine to store the value of the expression sqrt( b^2 - 4 * a * c ) in a 

variable, especially since it’s used in two places later. But the name 
temp doesn’t tell you anything about what the variable does.
• A better approach is shown in this example:



Naming Boolean Variables

Keep typical boolean names in mind
• done
• Use done to indicate whether something is done.
• The variable can indicate whether a loop is done or some other 

operation is done. Set done to false before something is done, and set 
it to true when something is completed.



Naming Boolean Variables

Keep typical boolean names in mind
• error
• Use error to indicate that an error has occurred.
• Set the variable to false when no error has occurred and to true when 

an error has occurred.



Naming Boolean Variables

Keep typical boolean names in mind
• found
• Use found to indicate whether a value has been found.
• Set found to false when the value has not been found and to true 

once the value has been found. Use found when searching an array 
for a value, a file for an employee ID, a list of paychecks for a certain 
paycheck amount, and so on.



Naming Boolean Variables

Keep typical boolean names in mind
• success or ok
• Use success or ok to indicate whether an operation has been 

successful.
• Set the variable to false when an operation has failed and to true 

when an operation has succeeded. If you can, replace success with a 
more specific name that describes precisely what it means to be 
successful. If the program is successful when processing is complete, 
you might use processingComplete instead. If the program is 
successful when a value is found, you might use found instead.



Naming Boolean Variables

Give boolean variables names that imply true or false
• Names like done and success are good boolean names because the 

state is either true or false; something is done or it isn’t; it’s a success 
or it isn’t.
• Names like status and sourceFile, on the other hand, are poor 

boolean names because they’re not obviously true or false.
• For better results, replace status with a name like error or statusOK, 

and replace sourceFile with sourceFileAvailable or sourceFileFound, or 
whatever the variable represents.



Naming Boolean Variables

Give boolean variables names that imply true or false
• Some programmers like to put is in front of their boolean names.
• Then the variable name becomes a question: isdone? isError? 

isFound? isProcessingComplete? Answering the question with true or 
false provides the value of the variable.
• It won’t work with vague names: isStatus? makes no sense at all.



Naming Boolean Variables

Use positive boolean variable names
• Negative names like notFound, notdone, and notSuccessful are 

difficult to read when they are negated—for example,

• Such a name should be replaced by found, done, or 
processingComplete and then negated with an operator as 
appropriate.
• If what you’re looking for is found, you have found instead of not 

notFound.



Naming Constants

• When naming constants, name the abstract entity the constant 
represents rather than the number the constant refers to.
• FIVE is a bad name for a constant (regardless of whether the value it 

represents is 5.0). CYCLES_NEEDED is a good name.
• CYCLES_NEEDED can equal 5.0 or 6.0.
• FIVE = 6.0 would be ridiculous.



Naming Conventions

• The key is that any convention is often better than no convention.
• The convention may be arbitrary. The power of naming conventions 

doesn’t come from the specific convention chosen but from the fact 
that a convention exists, adding structure to the code and giving you 
fewer things to worry about.



Naming Conventions

Why Have Conventions?
• They let you take more for granted.
• By making one global decision rather than many local ones, you can 

concentrate on the more important characteristics of the code.



Naming Conventions

Why Have Conventions?
• They help you transfer knowledge across projects.
• Similarities in names give you an easier and more confident 

understanding of what unfamiliar variables are supposed to do.



Naming Conventions

Why Have Conventions?
• They help you learn code more quickly on a new project.
• Rather than learning that Anita’s code looks like this, Julia’s like that, 

and Kristin’s like something else, you can work with a more consistent 
set of code.



Naming Conventions

Why Have Conventions?
• Without naming conventions, you can easily call the same thing by

two different names.
• For example, you might call total points both pointTotal and 

totalPoints. This might not be confusing to you when you write the 
code, but it can be enormously confusing to a new programmer who 
reads it later.



Naming Conventions

Why Have Conventions?
• They compensate for language weaknesses.
• You can use conventions to emulate named constants and 

enumerated types. The conventions can differentiate among local, 
class, and global data and can incorporate type information for types
that aren’t supported by the compiler.



Naming Conventions

Why Have Conventions?
• They emphasize relationships among related items. If you use object data,

the compiler takes care of this automatically. If your language doesn’t
support objects, you can supplement it with a naming convention.
• Names like address, phone, and name don’t indicate that the variables are

related. But suppose you decide that all employee-data variables should
begin with an Employee prefix. employeeAddress, employeePhone, and
employeeName leave no doubt that the variables are related.
• Programming conventions can make up for the weakness of the language 

you’re using.



Naming Conventions

Degrees of Formality
• Different conventions have different degrees of formality. An informal 

convention might be as simple as “Use meaningful names.”
• In general, the degree of formality you need is dependent on the 

number of people working on a program, the size of the program, and 
the program’s expected life span.
• On tiny projects, a strict convention might be unnecessary overhead.
• On larger projects in which several people are involved, formal 

conventions are extremely practical for readability



Naming Conventions

Differentiate between variable names and routine names
• The convention the course book uses is to begin variable and object 

names with lower case and routine names with upper case: 
variableName vs. RoutineName().



Naming Conventions (Informal)

Differentiate between classes and objects
• The correspondence between class names and object names—or 

between types and variables of those types—can get tricky.
• Several standard options exist, as shown in the following examples:





Naming Conventions (Informal)

Identify global variables
• One common programming problem is misuse of global variables.
• If you give all global variable names a g_ prefix, for example, a 

programmer seeing the variable g_RunningTotal will know it’s a global 
variable and treat it as such.



Naming Conventions (Informal)

Identify member variables
• Identify a class’s member data.
• Make it clear that the variable isn’t a local variable and that it isn’t a 

global variable either.
• For example, you can identify class member variables with an m_ 

prefix to indicate that it is member data.



Naming Conventions (Informal)

Identify named constants
• Named constants need to be identified so that you can tell whether 

you’re assigning a variable a value from another variable (whose value
might change) or from a named constant.
• One approach to naming constants is to use a prefix like c_ for 

constant names.
• That would give you names like c_RecsMax or c_LinesPerPageMax. In 

C++ and Java, the convention is to use all uppercase letters, possibly 
with underscores to separate words, RECSMAX or RECS_ MAX and 
LINESPERPAGEMAX or LINES_PER_PAGE_ MAX.



Naming Conventions (Informal)

Identify elements of enumerated types
• Elements of enumerated types need to be identified for the same 

reasons that named constants do—to make it easy to tell that the 
name is for an enumerated type as opposed to a variable, named 
constant, or function.
• The standard approach applies: you can use all caps or an e_ or E_ 

prefix for the name of the type itself and use a prefix based on the 
specific type like Color_ or Planet_ for the members of the type.



Naming Conventions (Informal)

Format names to enhance readability
• Two common techniques for increasing readability are using 

capitalization and spacing characters to separate words.
• For example, GYMNASTICSPOINTTOTAL is less readable than 

gymnasticsPointTotal or gymnastics_point_total.
• C++, Java, Visual Basic, and other languages allow for mixed 

uppercase and lowercase characters. C++, Java, Visual Basic, and 
other languages also allow the use of the underscore (_) separator.





Creating Short Readable Names

• Use standard abbreviations (the ones in common use, which are listed in a dictionary).

• Remove all nonleading vowels. (computer becomes cmptr, and screen becomes scrn, and integer becomes
intgr.)

• Remove articles: and, or, the, and so on.
• Use the first letter or first few letters of each word.

• Truncate consistently after the first, second, or third (whichever is appropriate) letter of each word.
• Keep the first and last letters of each word.
• Use every significant word in the name, up to a maximum of three words.
• Remove useless suffixes—ing, ed, and so on.
• Keep the most noticeable sound in each syllable.
• Be sure not to change the meaning of the variable.

• Iterate through these techniques until you abbreviate each variable name to between 8 to 20 characters or 
the number of characters to which your language limits variable names.



Creating Short Readable Names

Phonetic Abbreviations
• Some people advocate creating abbreviations based on the sound of 

the words rather than their spelling.
• Thus skating becomes sk8ing, highlight becomes hilite, before 

becomes b4, execute becomes xqt, and so on.
• This seems too much like asking people to figure out. Preferable avoid 

them.



Creating Short Readable Names

Don’t abbreviate by removing one character from a word
• Typing one character is little extra work, and the one-character 

savings hardly justifies the loss in readability.
• It’s like the calendars that have “Jun” and “Jul.” You have to be in a big 

hurry to spell June as “Jun.” With most one-letter deletions, it’s hard 
to remember whether you removed the character. Either remove 
more than one character or spell out the word.



Creating Short Readable Names

Create names that you can pronounce
• Use xPos rather than xPstn and needsComp rather than ndsCmptg.
• Apply the telephone test—if you can’t read your code to someone 

over the phone, rename your variables to be more distinctive 
(Kernighan and Plauger 1978).



Creating Short Readable Names

Avoid combinations that result in misreading or mispronunciation
• To refer to the end of B, favor ENDB over BEND.
• If you use a good separation technique, you won’t need this guideline 

since B-END, BEnd, or b_end won’t be mispronounced.



Creating Short Readable Names

Use a thesaurus to resolve naming collisions
• One problem in creating short names is naming collisions—names 

that abbreviate to the same thing.
• For example, if you’re limited to three characters and you need to use 

fired and full revenue disbursal in the same area of a program, you 
might inadvertently abbreviate both to frd.
• One easy way to avoid naming collisions is to use a different word 

with the same meaning, so a thesaurus is handy.
• Complete revenue disbursal might be substituted for full revenue 

disbursal.



Creating Short Readable Names

Document extremely short names with translation tables in the code
• In languages that allow only very short names, include a translation 

table to provide a reminder of the mnemonic content of the variables.
Include the table as comments at the beginning of a block of code.
Here’s an example:





Creating Short Readable Names

Document all abbreviations in a project-level “Standard Abbreviations”
document
• Abbreviations in code create two general risks:

• A reader of the code might not understand the abbreviation.
• Other programmers might use multiple abbreviations to refer to the same word,

which creates needless confusion.
• To address both these potential problems, you can create a “Standard 

Abbreviations” document that captures all the coding abbreviations used
on your project. The document can be a word processor document or a 
spreadsheet. On a very large project, it could be a database.



Creating Short Readable Names

Remember that names matter more to the reader of the code than to
the writer
• Read code of your own that you haven’t seen for at least six months 

and notice where you have to work to understand what the names 
mean. Resolve to change the practices that cause such confusion.



Names to Avoid

Avoid misleading names or abbreviations
• Make sure that a name is clear.
• For example, FALSE is usually the opposite of TRUE and would be a 

bad abbreviation for “Fig and Almond Season.”



Names to Avoid

Avoid names with similar meanings
• If you can switch the names of two variables without hurting the 

program, you need to rename both variables.
• For example, input and inputValue, recordNum and numRecords, and 

fileNumber and fileIndex are so semantically similar that if you use 
them in the same piece of code you’ll easily confuse them and install 
some subtle, hard-to-find errors.



Names to Avoid

Avoid variables with different meanings but similar names
• If you have two variables with similar names and different meanings, 

try to rename one of them or change your abbreviations.
• Avoid names like clientRecs and clientReps. They’re only one letter 

different from each other, and the letter is hard to notice. Have at 
least two-letter differences between names, or put the differences at 
the beginning or at the end.
• clientRecords and clientReports are better than the original names.



Names to Avoid

Avoid names that sound similar, such as wrap and rap yet different
• You end up having conversations like this:



Names to Avoid

Avoid numerals in names
• If the numerals in a name are really significant, use an array instead of 

separate variables. If an array is inappropriate, numerals are even 
more inappropriate.
• For example, avoid file1 and file2, or total1 and total2.
• You can almost always think of a better way to differentiate between 

two variables than by tacking a 1 or a 2 onto the end of the name.
• Some real-world entities (such as Route 66 or Interstate 405) have 

numerals embedded in them. But consider whether there are better 
alternatives before you create a name that includes numerals.



Names to Avoid

Avoid misspelled words in names
• It’s hard enough to remember how words are supposed to be spelled.
• To require people to remember “correct” misspellings is simply too 

much to ask.
• For example, misspelling highlight as hilite to save three characters 

makes it devilishly difficult for a reader to remember how highlight 
was misspelled.
• Was it highlite? hilite? hilight? hilit? jai-a-lai-t? Who knows?



Names to Avoid

Avoid words that are commonly misspelled in English
• Absense, acummulate, acsend, calender, concieve, defferred, definate, 

independance, occassionally, prefered, reciept, superseed, and many 
others are common misspellings in English.



Names to Avoid

Don’t differentiate variable names solely by capitalization
• If you’re programming in a case-sensitive language such as C++, you 

may be tempted to use frd for fired, FRD for final review duty, and Frd
for full revenue disbursal. Avoid this practice.
• Although the names are unique, the association of each with a 

particular meaning is arbitrary and confusing. Frd could just as easily 
be associated with final review duty and FRD with full revenue 
disbursal, and no logical rule will help you or anyone else to 
remember which is which.



Names to Avoid

Avoid multiple natural languages
• In multinational projects, enforce use of a single natural language for 

all code, including class names, variable names, and so on.
• Reading another programmer’s code can be a challenge; reading 

another programmer’s code in Southeast Martian is impossible.
• A more subtle problem occurs in variations of English. If a project is 

conducted in multiple English-speaking countries, standardize on one 
version of English so that you’re not constantly wondering whether 
the code should say “color” or “colour,” “check” or “cheque,” and so 
on.



Names to Avoid

Don’t use names that are totally unrelated to what the variables 
represent
• Sprinkling names such as margaret and pookie throughout your 

program virtually guarantees that no one else will be able to 
understand it.
• Avoid using personal, special and unrelated names.



Names to Avoid

Avoid names containing hard-to-read characters
• Be aware that some characters look so similar that it’s hard to tell 

them apart. If the only difference between two names is one of these 
characters, you might have a hard time telling the names apart.




