
SWEN 6301 Software Construction
Module 8: Software Testing

Ahmed Tamrawi

Copyright notice: 1- care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.
2- many slides are adopted with permission from Ian Sommerville and Mustafa Misir ‘s lecture notes on Software Engineering course and Modern Software Development Technology course.

Testing

• Some programmers use the terms “testing” and “debugging”
interchangeably, but this is not right!

• Testing is a means of detecting errors.
• Debugging is a means of diagnosing and correcting the root causes of

errors that have already been detected.

Testing can only show the presence of errors,
not their absence!

Testing

• Testing is intended to show that a program does what it is intended
to do and to discover program defects before it is put into use.

• When you test software, you execute a program using artificial
(simulated) data.

• You check the results of the test run for errors, anomalies or
information about the program’s non-functional attributes.

• Testing is part of a more general verification and validation process,
which also includes static validation techniques.

Testing

The testing process has two distinct goals:
• The first goal leads to validation testing, where you expect the system to

perform correctly using a given set of test cases that reflect the system’s
expected use.

• To demonstrate to the developer and the system customer that the software
meets its requirements. A successful test shows that the system operates as
intended.

• The second goal leads to defect testing, where the test cases are
designed to expose defects.

• To discover faults or defects in the software where its behavior is incorrect or
not in conformance with its specification. A successful test is a test that makes
the system perform incorrectly and so exposes a defect in the system.

An Input-Output Model of Software Testing

Ie
Input test data

Oe
Output test results

System

Inputs causing
anomalous
behaviour

Outputs which reveal
the presence of
defects

Verification vs Validation

• Verification:
• "Are we building the product right”.
• The software should conform to its specification.

• Validation:
• "Are we building the right product”.
• The software should do what the user really requires.

• Aim of V & V is to establish confidence that the system is fit for
purpose.

• Depends on system’s purpose, user expectations and marketing
environment

Verification vs Validation

Software Purpose
• The more critical the software, the more important that it is reliable.
• For example, the level of confidence required for software used to

control a safety-critical system is much higher than that required for a
prototype that has been developed to demonstrate new product
ideas.

Verification vs Validation

User Expectations
• Because of their experiences with buggy, unreliable software, many users

have low expectations of software quality. They are not surprised when
their software fails.

• When a new system is installed, users may tolerate failures because the
benefits of use outweigh the costs of failure recovery.

• In these situations, you may not need to devote as much time to testing
the software.

• However, as software matures, users expect it to become more reliable so
more thorough testing of later versions may be required.

Verification vs Validation

Marketing Environment
• When a system is marketed, the sellers of the system must take into

account competing products, the price that customers are willing to
pay for a system, and the required schedule for delivering that system.

• In a competitive environment, a software company may decide to
release a program before it has been fully tested and debugged
because they want to be the first into the market.

• If a software product is very cheap, users may be willing to tolerate a
lower level of reliability.

Inspections and Testing

• Software inspections is concerned with analysis of the static system
representation to discover problems (static verification)

• May be supplement by tool-based document and code analysis.

• Software testing is concerned with exercising and observing product
behaviour (dynamic verification)

• The system is executed with test data (or simulation) and its operational behaviour is
observed.

Inspections and Testing

UML design
models

Software
architecture

Requirements
specification

Database
schemas Program

System
prototype Testing

Inspections

Software Inspections

• These involve people examining the source representation with the aim of
discovering anomalies and defects.

• Inspections not require execution of a system so may be used before
implementation.

• They may be applied to any representation of the system (requirements,
design,configuration data, test data, etc.).

• They have been shown to be an effective technique for discovering program
errors.

Advantages of Inspections

• During testing, errors can mask (hide) other errors. Because
inspection is a static process, you don’t have to be concerned with
interactions between errors.

• Incomplete versions of a system can be inspected without additional
costs. If a program is incomplete, then you need to develop
specialized test harnesses to test the parts that are available.

• As well as searching for program defects, an inspection can also
consider broader quality attributes of a program, such as compliance
with standards, portability and maintainability.

Inspections and Testing

• Inspections and testing are complementary and not
opposing verification techniques.

• Both should be used during the V & V process.
• Inspections can check conformance with a specification but

not conformance with the customer’s real requirements.
• Inspections cannot check non-functional characteristics such

as performance, usability, etc.

A Model of the Software Testing Process

• Test cases are specifications of the inputs to the test and the expected
output from the system (the test results), plus a statement of what is
being tested.

• Test data are the inputs that have been devised to test a system.

Testing

• Test data can be generated automatically, but automatic test case
generation is impossible?

• What about mutation testing? is it feasible?
• However, test execution can be automated.

Stages of Testing

• Development testing, where the system is tested during
development to discover bugs and defects.

• Release testing, where a separate testing team test a complete
version of the system before it is released to users.

• User testing, where users or potential users of a system test the
system in their own environment.

Development Testing

• Development testing includes all testing activities that are carried out by
the team developing the system.

• Unit testing, individual program units or object classes are tested. Unit testing should
focus on testing the functionality of objects or methods.

• Component testing, several individual units are integrated to create composite
components. Component testing should focus on testing component interfaces.

• Integration testing is the combined execution of two or more classes, packages,
components, or subsystems that have been created by multiple programmers or
programming teams.

• System testing, some or all of the components in a system are integrated and the
system is tested as a whole. System testing should focus on testing component
interactions.

• Regression testing is testing the system to check that changes have not ‘broken’
previously working code.

Unit Testing

• Unit testing is the process of testing
individual components in isolation.

• It is a defect testing process.
• Units may be:

• Individual functions or methods within an
object

• Object classes with several attributes and
methods

• Composite components with defined
interfaces used to access their functionality.

Unit Testing: Object Class Testing

• Complete test coverage of a class involves
• Testing all operations associated with an object
• Setting and interrogating all object attributes
• Exercising the object in all possible states.

• How many possible states are there?
• Inheritance makes it more difficult to design object class tests as the

information to be tested is not localised.

Unit Testing

• Unit testing is the execution of a complete class, routine, or small
program that has been written by a single programmer or team of
programmers, which is tested in isolation from the more complete
system.

• Unit tests are basically written and executed by software developers to make
sure that code behaves as expected.

Unit Testing

• When you are testing object classes, you should design your tests to
provide coverage of all of the features of the object. This means that
you should:

• test all operations associated with the object;
• set and check the value of all attributes associated with the object;
• put the object into all possible states. This means that you should simulate all

events that cause a state change.

Unit Testing

• For example, WeatherStation object
• It has a single attribute, which is its

identifier. This is a constant that is set
when the weather station is installed.

• You therefore only need a test that
checks if it has been properly set up.

• You need to define test cases for all of
the methods associated with the
object such as reportWeather,
reportStatus, etc.

Unit Testing

• Ideally, you should test methods in
isolation but, in some cases, some test
sequences are necessary.

• For example, to test the method that
shuts down the weather station
instruments (shutdown), you need to
have executed the restart method.

Unit Testing

• Inheritance makes object class testing more complicated.
• You can’t simply test an operation in the class where it is defined and

assume that it will work as expected in the subclasses that inherit the
operation.

• The operation that is inherited may make assumptions about other
operations and attributes.

• These may not be valid in some subclasses that inherit the operation.
You therefore have to test the inherited operation in all of the
contexts where it is used.

Unit Testing

• To test the states of the weather station,
you use a state model (as on the next slide)

• Using this model, you can identify
sequences of state transitions that have to
be tested and define event sequences to
force these transitions.

• In principle, you should test every possible
state transition sequence, although in
practice this may be too expensive.

Unit Testing

Unit Testing

• Whenever possible, you should automate unit testing.
• In automated unit testing, you make use of a test automation

framework (such as JUnit) to write and run your program tests.
• Unit testing frameworks provide generic test classes that you extend

to create specific test cases.
• They can then run all of the tests that you have implemented and

report, often through some GUI, on the success or failure of the tests.
• An entire test suite can often be run in a few seconds so it is possible

to execute all the tests every time you make a change to the program.

Unit Testing

• An automated test has three parts:
1. A setup part, where you initialize the system with the test case, namely the

inputs and expected outputs.
2. A call part, where you call the object or method to be tested.
3. An assertion part where you compare the result of the call with the

expected result. If the assertion evaluates to true, the test has been
successful; if false, then it has failed.

Unit Testing

• Sometimes the object that you are testing has dependencies on other
objects that may not have been written or which slow down the
testing process if they are used.

• For example, if your object calls a database, this may involve a slow
setup process before it can be used.

• In these cases, you may decide to use mock objects.

Unit Testing

• Mock objects are objects with the same interface as the external
objects being used that simulate its functionality.

• Therefore, a mock object simulating a database may have only a few
data items that are organized in an array.

• They can therefore be accessed quickly, without the overheads of
calling a database and accessing disks.

Unit tests with Mockito
https://www.vogella.com/tutorials/Mockito/article.html

Component Testing

• Component testing is the execution of a class, package, small
program, or other program element that involves the work of multiple
programmers or programming teams, which is tested in isolation from
the more complete system.

Component Testing

• Software components are often composite components that are
made up of several interacting objects.

• For example, in the weather station system, the reconfiguration component
includes objects that deal with each aspect of the reconfiguration.

• You access the functionality of these objects through the defined
component interface.

• Testing composite components should therefore focus on showing
that the component interface behaves according to its specification.

• You can assume that unit tests on the individual objects within the
component have been completed.

Interface Testing

• Objectives are to detect faults due to interface errors or invalid
assumptions about interfaces.

• Interface types
• Parameter interfaces: Data passed from one method or procedure to

another.
• Shared memory interfaces: Block of memory is shared between procedures

or functions.
• Procedural interfaces: Sub-system encapsulates a set of procedures to be

called by other sub-systems.
• Message passing interfaces: Sub-systems request services from other sub-

systems

Integration Testing

• Integration testing is the combined execution of two or more classes,
packages, components, or subsystems that have been created by
multiple programmers or programming teams.

• This kind of testing typically starts as soon as there are two classes to
test and continues until the entire system is complete.

System Testing

• System testing is the execution of the software in its final
configuration, including integration with other software and hardware
systems.

• It tests for security, performance, resource loss, timing problems, and
other issues that can’t be tested at lower levels of integration.

• It may include tests based on
• risks and/or requirement specifications, business process, use cases, or other

high level descriptions of system behavior, interactions with the operating
systems, and system resources.

System Testing

• System testing during development involves integrating components
to create a version of the system and then testing the integrated
system.

• The focus in system testing is testing the interactions between
components.

• System testing checks that components are compatible, interact
correctly and transfer the right data at the right time across their
interfaces.

• System testing tests the emergent behavior of a system.

System and Component Testing

• During system testing, reusable components that have been
separately developed and off-the-shelf systems may be integrated
with newly developed components. The complete system is then
tested.

• Components developed by different team members or sub-teams
may be integrated at this stage. System testing is a collective rather
than an individual process.

• In some companies, system testing may involve a separate testing team with
no involvement from designers and programmers.

Regression Testing

• Regression testing is the repetition of previously executed test cases for the
purpose of finding defects in modified software that previously passed the same
set of tests.

• Any new feature is added
• Any enhancement is done
• Any bug is fixed
• Any performance related issue is fixed

• Regression testing is testing the system to check that changes have not ‘broken’
previously working code.

• In a manual testing process, regression testing is expensive but, with automated
testing, it is simple and straightforward. All tests are rerun every time a change is
made to the program.

• Tests must run ‘successfully’ before the change is committed.

Testing

• Testing is usually broken into two broad categories:
• black-box (or specification-based) testing
• white-box (or glass-box) testing

Black-Box Testing

• Black-box testing refers to tests in which the tester cannot see the
inner workings of the item being tested. This obviously does not apply
when you test code that you have written!

• a.k.a. Specification-based testing technique or input/output driven testing
techniques because they view the software as a black-box with inputs and
outputs.

• Concentrating on what the software does, not how it does it.

White-Box Testing

• White-box testing refers to tests in which the tester is aware of the
inner workings of the item being tested. This is the kind of testing that
you as a developer use to test your own code.

• a.k.a. Structure-based testing technique is or ‘glass-box’ testing technique
because here the testers require knowledge of how the software is
implemented, how it works.

Development Testing

• Developer testing typically consists of unit tests, component tests,
and integration tests

• but can sometimes include regression tests and system tests.

• A key question is, How much time should be spent in developer
testing on a typical project?

Development Testing

• What do you do with the results of developer testing?
• To assess the reliability of the product under development. Even if you never

correct the defects that testing finds, testing describes how reliable the
software is.

• To guide corrections to the software.
• Finally, over time, the record of defects found through testing helps reveal the

kinds of errors that are most common. You can use this information to select
appropriate training classes, direct future technical review activities, and
design future test cases.

Development Testing

• During construction, you generally write a routine or class, check it
mentally, and then review it or test it.

• Regardless of your integration or system-testing strategy, you should
test each unit thoroughly before you combine it with any others.

Development Testing

• Test for each relevant requirement to make sure that the requirements
have been implemented.

• Plan the test cases for this step at the requirements stage or as early
as possible—preferably before you begin writing the unit to be tested.

• Consider testing for common omissions in requirements.
• The level of security, storage, the installation procedure, and system

reliability are all fair game for testing and are often missed at
requirements time.

Development Testing

• Test for each relevant design concern to make sure that the design has
been implemented.

• Plan the test cases for this step at the design stage or as early as
possible-before you begin the detailed coding of the routine or class
to be tested.

Development Testing

• Use Basis Path Testing to add detailed test cases to those that test the
requirements and the design.

• Add data-flow tests, and then add the remaining test cases needed to
thoroughly exercise the code.

• At a minimum, you should test every line of code.
• Basis Path Testing and Data-Flow Testing are described later...

Intractability of Testing

• To use testing to prove that a program works, you’d have to test every
conceivable input values and every feasible paths.

• Number of paths grows exponentially with the number of non-
nested if conditions (branch nodes in control flow graph).

• Number of input grows exponentially with the number of bits
composing the value.

• Therefore:
• Input Coverage: Complete input value coverage is interactable in general.
• Path Coverage: Complete path coverage is interactable in general.

Intractability of Testing

• Suppose, for example, that you have a program that takes a name, an
address, and a phone number and stores them in a file.

• Each of the names and addresses is 20 characters long and that there
are 26 possible characters to be used in them. This would be the
number of possible inputs:

Intractability of Testing
public void foo() {

if(C1) {
S1();

} else {
S2();

}
if(C2) {

S3();
} else {

S4();
}
if(C3) {

S5();
} else {

S6();
}
if(C4) {

S7();
} else {

S8();
}
if(C5) {

S9();
} else {

S10();
}

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 5 non-nested if conditions

(Branch Points)

𝟐𝟓 = 𝟑𝟐
Execution (Paths)

Behaviors

Intractability of Testing

• Since exhaustive testing is impossible, practically speaking, the art of
testing is that of picking the test cases most likely to find errors.

• You need to concentrate on picking a few that tell you different things
rather than a set that tells you the same thing over and over.

Intractability of Testing

• Coverage Metrics include (but not limited to):
• Branch Coverage (fair metric) assists how much branch nodes (conditions) have

been covered by a test case.
• Statement Coverage (fair metric) assists how much statements have been covered

by a test case.
• Path Coverage (better metric) assists how much paths have been covered by a test

case.
• Input Coverage (better metric) assists how much input space have been covered

by a test case.
• Path + Input Coverage (best metric) assists completeness of the test case.

Control Flow Testing : Structured Basis Testing

• Basis path testing (structured testing) is a white box method for
designing test cases.

• The method analyzes the control flow graph of a program to find a set of
linearly independent paths of execution.

• Basis path testing guarantees complete branch coverage (all edges of
the control flow graph) and complete statement coverage, but achieves
that without covering all possible paths of the control flow graph—the
latter is usually too costly.

• Basis path testing has been widely used and studied

Control Flow Testing : Structured Basis Testing

• The method normally uses McCabe' cyclomatic complexity to
determine the number of linearly independent paths and then
generates test cases for each path thus obtained.

• Basis path testing guarantees complete branch coverage (all edges of
the control flow graph) and complete statement coverage, but
achieves that without covering all possible paths of the control flow
graph—the latter is usually too costly.

V(G) = E - N + 2: Where, E - Number of edges N - Number of Nodes
V(G) = P + 1: Where P = Number of predicate nodes (node that contains condition)

Control Flow Testing : Structured Basis Testing

• Step 1 : Draw the Flow Graph of the Function/Program under
consideration as shown below:

Predicate (branching)

Predicate (branching)

Predicate (branching)

Control Flow Testing : Structured Basis Testing

• Step 2 : Determine the independent paths.

Predicate (branching)

Predicate (branching)

Predicate (branching)

Control Flow Testing : Structured Basis Testing

• You can compute the minimum number of cases needed for basis
testing in this straightforward way:

1. Start with 1 for the straight path through the routine.
2. Add 1 for each of the following keywords, or their equivalents: if, case,

while, for, and, and or, etc.

V(G) = E - N + 2: Where, E - Number of edges N - Number of Nodes
V(G) = P + 1: Where P = Number of predicate nodes (node that contains condition)

Control Flow Testing : Structured Basis Testing

• Start with one and count the if once to make a total of two. So, you
need to have at least two test cases to cover all the paths through the
program.

• In this example, you’d need to have the following test cases:

Control Flow Testing : Structured Basis Testing

• If the routine were much more complicated than this, the number of
test cases you’d have to use just to cover all the paths would increase
pretty quickly.

• Shorter routines tend to have fewer paths to test. Boolean
expressions without a lot of ANDs and ORs have fewer variations to
test. Ease of testing is another good reason to keep your routines
short and your boolean expressions simple.

• Now that you’ve created six test cases for the routine and satisfied
the demands of structured basis testing, can you consider the routine
to be fully tested? Probably not.

Data Flow Testing

• Data-flow testing is a family of test strategies based on selecting paths
through the program's control flow in order to explore sequences of events
related to the status of variables or data objects.

• focuses on the points at which variables receive values and the points at which these
values are used.

• Data-flow testing is based on the idea that data usage is at least as error-prone as
control flow.

• Data Flow testing helps us to pinpoint any of the following issues:
• A variable that is declared but never used within the program.
• A variable that is used but never declared.
• A variable that is defined multiple times before it is used.
• Deallocating a variable before it is used.

Data Flow Testing: Equivalence Partitioning

• A good test case covers a large part of the possible input data.
• If two test cases flush out exactly the same errors, you need only one

of them.
• The concept of “equivalence partitioning” is a formalization of this

idea and helps reduce the number of test cases required.
• is a software testing technique that divides the input data of a software unit

into partitions of equivalent data from which test cases can be derived.
• In principle, test cases are designed to cover each partition at least once.

Data Flow Testing: Equivalence Partitioning

• Password: must be a minimum 8 characters and maximum 12
characters.

• What are the test cases?

Data Flow Testing: Equivalence Partitioning

• Password: must be a minimum 8 characters and maximum 12
• Test Case 1: Consider password length less than 8.
• Test Case 2: Consider password of length exactly 8.
• Test Case 3: Consider password of length between 9 and 11.
• Test Case 4: Consider password of length exactly 12.
• Test Case 5: Consider password of length more than 12.

Data Flow Testing: Equivalence Partitioning

• Once you have identified a set of partitions, you choose test cases from each of
these partitions.

• A good rule of thumb for test case selection is to choose test cases on the
boundaries of the partitions, plus cases close to the midpoint of the partition.

• The reason for this is that designers and programmers tend to consider typical
values of inputs when developing a system. You test these by choosing the
midpoint of the partition.

• Boundary values are often atypical (e.g., zero may behave differently from other
non-negative numbers) so are sometimes overlooked by developers.

• Program failures often occur when processing these atypical values.

Data Flow Testing: Equivalence Partitioning

• Thinking about equivalence partitioning won’t give you a lot of new
insight into a program when you have already covered the program
with basis and data-flow testing.

• It’s especially helpful, however, when you’re looking at a program
from the outside (from a specification rather than the source code) or
when the data is complicated and the complications aren’t all
reflected in the program’s logic.

Data Flow Testing: Error Guessing

• In addition to the formal test techniques, good programmers use a
variety of less formal, heuristic techniques to expose errors in their
code.

• One heuristic is the technique of error guessing.
• It means creating test cases based upon guesses about where the

program might have errors, although it implies a certain amount of
sophistication in the guessing.

Data Flow Testing: Boundary Analysis

• One of the most fruitful areas for testing is boundary conditions—off-
by-one errors.

• Saying num – 1 when you mean num and saying >= when you mean >
are common mistakes.

Data Flow Testing: Boundary Analysis

• The idea of boundary analysis is to write test cases that exercise the boundary
conditions.

• If you’re testing for a range of values that are less than max, you have three
possible conditions:

• As shown, there are three boundary cases: just less than max, max itself, and just
greater than max. It takes three cases to ensure that none of the common
mistakes has been made.

Data Flow Testing: Classes of Bad Data

• Aside from guessing that errors show up around boundary conditions,
you can guess about and test for several other classes of bad data.

• Typical bad-data test cases include
• Too little data (or no data)
• Too much data
• The wrong kind of data (invalid data)
• The wrong size data
• Uninitialized data

Data Flow Testing: Classes of Good Data

• When you try to find errors in a program, it’s easy to miss the fact that
the main case might contain an error.

• Following are other kinds of good data that are worth checking.
Checking each of these kinds of data can reveal errors, depending on
the item being tested:
• Nominal cases—middle-of-the-road, expected values

• Minimum normal configuration

• Maximum normal configuration

• Compatibility with old data

Use Test Cases That Make Hand-Checks
Convenient
• Let’s suppose you’re writing a test case for a nominal salary; you need

a nominal salary, and the way you get one is to type in whatever
numbers your hands land on.

• Testing $90,783.82
• Now, further suppose that the test case succeeds—that is, it finds an

error. How do you know that it’s found an error? Well, presumably,
you know what the answer is and what it should be because you
calculated the correct answer by hand.

• Better to use numbers that can be hand checked, e.g. $90,000

Development Testing: Limitations

Developer tests tend to be “clean tests”

• Developers tend to test for whether the code works (clean tests)
rather than test for all the ways the code breaks (dirty tests).

• Immature testing organizations tend to have about five clean tests for
every dirty test.

• Mature testing organizations tend to have five dirty tests for every
clean test. This ratio is not reversed by reducing the clean tests; it’s
done by creating 25 times as many dirty tests (Boris Beizer in Johnson
1994).

Development Testing: Limitations

Developer testing tends to have an optimistic view of test coverage
• Average programmers believe they are achieving 95 percent test

coverage, but they’re typically achieving more like 80 percent test
coverage in the best case, 30 percent in the worst case, and more like
50-60 percent in the average case (Boris Beizer in Johnson 1994).

Development Testing: Limitations

Developer testing tends to skip more sophisticated kinds of test

• Most developers view the kind of test coverage known as “100%
statement coverage” as adequate.

• This is a good start, but it’s hardly sufficient.
• A better coverage standard is to meet what’s called “100% branch

coverage,” with every predicate term being tested for at least one true
and one false value.

• What is the ultimate coverage? Input + Path Coverage but its
inteactable!

Which Classes Contain the Most Errors?

• It’s natural to assume that defects are distributed evenly throughout
your source code.

• If you have an average of 10 defects per 1000 lines of code, you might
assume that you’ll have one defect in a class that contains 100 lines of
code.

• This is a natural assumption, but it’s wrong.

Which Classes Contain the Most Errors?

• It was reported that a program at IBM identified 31 of 425 classes are
error-prone.

• The 31 classes were repaired or completely redeveloped, and, in less
than a year, customer-reported defects were reduced ten to one.

• Total maintenance costs were reduced by about 45 percent.
• Customer satisfaction improved from “unacceptable” to “good” (Jones

2000).

Which Classes Contain the Most Errors?

• Most errors tend to be concentrated in a few highly defective
routines. Here is the general relationship between errors and code:

• 80% of the errors are found in 20% of a project’s classes or routines (Endres
1975, Gremillion 1984, Boehm 1987b, Shull et al 2002).

• 50% of the errors are found in 5% of a project’s classes (Jones 2000).

Which Classes Contain the Most Errors?

• These relationships might not seem so important until you recognize a
few conclusions.

• First, 20% of a project’s routines contribute 80% of the cost of
development (Boehm 1987b). That doesn’t necessarily mean that the
20% that cost the most are the same as the 20% with the most
defects, but it’s pretty suggestive.

• Second, regardless of the exact proportion of the cost contributed by
highly defective routines, highly defective routines are extremely
expensive.

Which Classes Contain the Most Errors?

• In a classic study in the 1960s, IBM performed an analysis of its
OS/360 operating system and found that errors were not distributed
evenly across all routines but were concentrated into a few.

• Those error-prone routines were found to be “the most expensive
entities in programming” (Jones 1986a).

• They contained as many as 50 defects per 1000 lines of code, and
fixing them often cost 10 times what it took to develop the whole
system (The costs included customer support and in-the-field
maintenance.)

Which Classes Contain the Most Errors?

• Third, the implication of expensive routines for development is clear.
• If you can cut close to 80% of the cost by avoiding troublesome

routines, you can cut a substantial amount of the schedule as well.
• This is a clear illustration of the General Principle of Software Quality:

improving quality improves the development schedule and reduces
development costs.

Which Classes Contain the Most Errors?

• Fourth, the implication of avoiding troublesome routines for
maintenance is equally clear.

• Maintenance activities should be focused on identifying, redesigning,
and rewriting from the ground up those routines that have been
identified as error-prone.

• In the IBM project mentioned earlier, productivity of the product
releases improved about 15% after replacement of the error-prone
classes (Jones 2000).

Release Testing

• Release testing is the process of testing a particular release of a
system that is intended for use outside of the development team.

• The primary goal of the release testing process is to convince the
supplier of the system that it is good enough for use.

• Release testing, therefore, has to show that the system delivers its specified
functionality, performance and dependability, and that it does not fail during
normal use.

• Release testing is usually a black-box testing process where tests are
only derived from the system specification.

Release Testing and System Testing

• Release testing is a form of system testing.
• Important differences:

• A separate team that has not been involved in the system development,
should be responsible for release testing.

• System testing by the development team should focus on discovering bugs in
the system (defect testing). The objective of release testing is to check that
the system meets its requirements and is good enough for external use
(validation testing).

Performance Testing

• Part of release testing may involve testing the emergent properties of
a system, such as performance and reliability.

• Tests should reflect the profile of use of the system.
• Performance tests usually involve planning a series of tests where the

load is steadily increased until the system performance becomes
unacceptable.

• Stress testing is a form of performance testing where the system is
deliberately overloaded to test its failure behavior.

User Testing

• User Testing where users or potential users of a system test the
system in their own environment

• User or customer testing is a stage in the testing process in which
users or customers provide input and advice on system testing.

• User testing is essential, even when comprehensive system and
release testing have been carried out.

• The reason for this is that influences from the user’s working environment
have a major effect on the reliability, performance, usability and robustness
of a system. These cannot be replicated in a testing environment.

Types of User Testing

• Alpha testing
• Users of the software work with the development team to test the software

at the developer’s site.

• Beta testing
• A release of the software is made available to users to allow them to

experiment and to raise problems that they discover with the system
developers.

• Acceptance testing
• Customers test a system to decide whether or not it is ready to be accepted

from the system developers and deployed in the customer environment.
Primarily for custom systems.

Acceptance Testing

• Acceptance testing is the execution of the software after it is released,
by the customer

• After the system test has corrected all or most defects, the system will be
delivered to the user or customer for acceptance testing.

Define
acceptance

criteria

Test
criteria

Plan
acceptance

testing

Derive
acceptance

tests

Run
acceptance

tests

Negotiate
test results

Accept or
reject

system

Test
plan

Tests Test
results

Testing
report

Agile Methods and Acceptance Testing

• In agile methods, the user/customer is part of the development team
and is responsible for making decisions on the acceptability of the
system.

• Tests are defined by the user/customer and are integrated with other
tests in that they are run automatically when changes are made.

• There is no separate acceptance testing process.
• Main problem here is whether or not the embedded user is ‘typical’

and can represent the interests of all system stakeholders.

Smoke Testing (Build Verification Testing)

• A common approach for creating “daily builds” for product software
• Smoke testing steps:

• Software components that have been translated into code are integrated into a
“build.”

• A build includes all data files, libraries, reusable modules, and engineered components that
are required to implement one or more product functions.

• A series of tests is designed to expose errors that will keep the build from properly
performing its function.

• The intent should be to uncover “show stopper” errors that have the highest likelihood of
throwing the software project behind schedule.

• The build is integrated with other builds and the entire product (in its current form) is
smoke tested daily.

• The integration approach may be top down or bottom up.

Comparison Testing

• Used only in situations in which the reliability of software is
absolutely critical (e.g., human-rated systems)

• Separate software engineering teams develop independent versions of an
application using the same specification

• Each version can be tested with the same test data to ensure that all provide
identical output

• Then all versions are executed in parallel with real-time comparison of results
to ensure consistency

Model-Based Testing

• Analyze an existing behavioral model for the software or create one.
• Recall that a behavioral model indicates how software will respond to external

events or stimuli.
• Traverse the behavioral model and specify the inputs that will force the

software to make the transition from state to state.
• The inputs will trigger events that will cause the transition to occur.

• Review the behavioral model and note the expected outputs as the
software makes the transition from state to state.

• Execute the test cases.
• Compare actual and expected results and take corrective action as

required.

MobileApp Testing

• User experience testing – ensuring app meets stakeholder usability
and accessibility expectations

• Device compatibility testing – testing on multiple devices
• Performance testing – testing non-functional requirements
• Connectivity testing – testing ability of app to connect reliably
• Security testing – ensuring app meets stakeholder security

expectations
• Testing-in-the-wild – testing app on user devices in actual user

environments
• Certification testing – app meets the distribution standards

