
SWEN 6301 Software Construction
Module 1: Introduction

Ahmed Tamrawi

Copyright notice: 1- care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.
2- many slides are adopted with permission from Ian Sommerville and Mustafa Misir ‘s lecture notes on Software Engineering course and Modern Software Development Technology course.

B.Eng. Computer Engineering
(Class of 2007)

M.Sc. Computer Engineering
(Class of 2011)

Ph.D. Computer Engineering
(Class of 2016)

Software Analysis & Security
Static Program Analysis

Abstractions and Symbolic Evaluations

Bug finding and Malware detection

Secure Programming

Build System Analysis

Data & Pattern Mining Quantum Physics
Biology
Astronomy

• Name
• Undergraduate major and/or current work.
• Something about you

• Food you like.
• Programming languages you used.
• Open source projects you contributed to.

• What do you think of this course?
• What are your goals after graduation?

Your turn!

Brian Green’s Books

Does the method work?

public static boolean isOdd(int i) {
return i % 2 == 1;

}

1
2
3

Does the method work?

public static boolean isOdd(int i) {
return i % 2 == 1;

}

1
2
3

Unfortunately, it doesn’t; it returns the
wrong answer one quarter of the time.

How to fix it?

Does the method work?

public static boolean isOdd(int i) {
return i % 2 != 0;

}

1
2
3

Can we do better?

Does the method work?

public static boolean isOdd(int i) {
return (i & 1) != 0;

}

1
2
3

Ukraine power grid attacks

Dec 2015 & Dec 2016

Jeep remotely hijacked

July 21, 2015

HP printers remotely set on fire

November 29, 2011

STUXnet Worm

Deployed in 2005, Identified in 2010

{ Complex Software }

Many programs are still buggy, late,
and over budget, and many fail to

satisfy the needs of their users

Although software development
practice has advanced rapidly in recent

years, common practice hasn’t

Improve your ability to create higher-quality software that is robust,
extensible, scalable, maintainable, and secure by understanding what are

common software construction practices

Goal of the Class

My Goals for Lectures?
Convey some complex technical ideas

Teach you what you need to know to do the
assignments, exams and the project

Avoid being fired

Keep most of you awake for 170 minutes

Get you to laugh at dumb jokes

Lectures are horrible medium for learning complex ideas,
many resource are available online

The point of assignments, exams and project is to teach you
things I want you to learn in the class

Avoid being fired

You probably should be getting more sleep

Gabriel Iglesias is funnier (check him out)

My Real Goal for Lectures

Provide context and meaning for the things you have or
will later learn on your own

What is
Software Construction?

What is
Software Construction?

What is
Software Construction?

No universally
accepted definition

Do we like any of
these definitions?

I know that I like
Mansaf!

What does this function do?
float[] foo(float[] array, float val1) {

float[] array_2 = null;
float val2 = 0;
for(int i = 1; i < array.length; i++) {

array_2 = new float[i];
for(int j = 0; j < i; j++) {

array_2[j] = array[j];
}

float avg = average(array_2);
if(avg <= val1) {

continue;
} else {

break;
}

}
return array_2;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

What is wrong?
float[] foo(float[] array, float val1) {

float[] array_2 = null;
float val2 = 0;
for(int i = 1; i < array.length; i++) {

array_2 = new float[i];
for(int j = 0; j < i; j++) {

array_2[j] = array[j];
}

float avg = average(array_2);
if(avg <= val1) {

continue;
} else {

break;
}

}
return array_2;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Not a descriptive function name

No comments about what this function does

Variable names are not descriptive either

Calculates average at each iteration from
scratch instead of updating it, therefore,
being not scalable for very large arrays

One branch of the if is used for loop
continuation

Unused variable val2

Do not check for null array return

What is wrong?
float[] foo(float[] array, float val1) {

float[] array_2 = null;
float val2 = 0;
for(int i = 1; i < array.length; i++) {

array_2 = new float[i];
for(int j = 0; j < i; j++) {

array_2[j] = array[j];
}

float avg = average(array_2);
if(avg <= val1) {

continue;
} else {

break;
}

}
return array_2;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

A Better Version

List<Float> findSubListExceedingTargetAverage(List<Float> values, Float targetAverage) {
Float sum = 0.0;
List<Float> result = new ArrayList<Float>();
for(Float value: values) {

result.add(value);
sum += value;
Float average = sum / (Float) result.size();
if(average > targetAverage) {

break;
}

}
return result;

}

1
2
3
4
5
6
7
8
9
10
11
12
13

SWEN 6301 Software
Construction Definition

Software construction is the process of creating and
evolving software source code that results on extensible,

maintainable, robust, and secure software

Main Ideas in SWEN 6301

How do you create code that is robust, extensible,
maintainable, and secure?

Creating Code

Evolving Code

How do you evolve code in an efficient way with minimum
complexity to keep the overall code robust, extensible,

maintainable, and secure?

ةروــــــــنم ةــعمــش ةـــــلف

a very complicated task
Software Construction

How complicated is Software Construction for a Tesla car?

Course Overview

We are close to the end of
code

Soon all code will be
generated instead of written

Programmers simply won’t be needed
because business people will generate

programs from specifications

We will create machines that can do what we want rather than what we say.
These machines can translate vaguely specified needs into perfectly

executing programs that precisely meet those needs.

There Will Be Code
We will never be rid of code

Code represents the details of the requirements. At some level those
details cannot be ignored or abstracted; they have to be specified.

Specifying requirements in such detail that a machine can execute them is
programming. Such a specification is code.

Good Code vs Bad Code
It was the bad code that brought

the company down

The Total Cost of Owning a Mess

Hire new developers The Grand Redesign in the Sky

The requirements changed in
ways that thwart the original

design

The schedules were too tight
to do things right

Stupid managers and intolerant
customers and useless marketing types

and telephone sanitizers

Why does good code rot so quickly into bad code?

The managers and marketers look to us
for the information they need to make

promises and commitments

The users look to us to validate
the way the requirements will

fit into the system.

The project managers look to
us to help work out the

schedule

But the fault is not in our stars, but in ourselves. We are unprofessional.

It’s your job to defend the

code with equal passion.

It is unprofessional for
programmers to bend to the will of
managers who don’t understand
the risks of making messes.

The only way to make the deadline—
the only way to go fast—is to keep the
code as clean as possible at all times.

The Art of Clean Code?
A programmer who writes clean code is an artist who can take a blank screen
through a series of transformations until it is an elegantly coded system.

What Is Clean Code?

Inventor of C++ and author of The C++
Programming Language

Bjarne Stroustrup

I like my code to be elegant and efficient. The logic should be
straightforward to make it hard for bugs to hide, the dependencies
minimal to ease maintenance, error handling complete according to
an articulated strategy, and performance close to optimal so as not to
tempt people to make the code messy with unprincipled optimizations.
Clean code does one thing well.

What Is Clean Code?
Clean code is simple and direct. Clean code reads like well-written
prose. Clean code never obscures the designer’s intent but rather is full
of crisp abstractions and straightforward lines of control.

Author of Object Oriented Analysis
and Design with Applications

Grady Booch

What Is Clean Code?
Clean code can be read, and enhanced by a developer other than its
original author. It has unit and acceptance tests. It has meaningful
names. It provides one way rather than many ways for doing one
thing. It has minimal dependencies, which are explicitly defined, and
provides a clear and minimal API. Code should be literate since
depending on the language, not all necessary information can be
expressed clearly in code alone.

Founder of OTI, godfather of the
Eclipse strategy

“Big” Dave Thomas

What Is Clean Code?
I could list all of the qualities that I notice in clean code, but there is
one overarching quality that leads to all of them. Clean code always
looks like it was written by someone who cares. There is nothing
obvious that you can do to make it better. All of those things were
thought about by the code’s author, and if you try to imagine
improvements, you’re led back to where you are, sitting in appreciation
of the code someone left for you—code left by someone who cares
deeply about the craft.

Author of Working Effectively with
Legacy Code

Michael Feathers

What Is Clean Code?
In recent years I begin, and nearly end, with Beck’s rules of simple code.
In priority order, simple code:
• Runs all the tests;
• Contains no duplication;
• Expresses all the design ideas that are in the system;
• Minimizes the number of entities such as classes, methods, functions,

and the like.
Author of Extreme Programming
Installed and Extreme Programming
Adventures in C#

Ron Jeffries

What Is Clean Code?
You know you are working on clean code when each routine you read
turns out to be pretty much what you expected. You can call it
beautiful code when the code also makes it look like the language was
made for the problem.

Inventor of Wiki, inventor of Fit, coinventor
of eXtreme Programming. Motive force
behind Design Patterns. Smalltalk and OO
thought leader. The godfather of all those
who care about code.

Ward Cunningham

Introduction to Software
Engineering

Topics Covered

• Professional software development
• What is meant by software engineering?

• Software engineering ethics
• A brief introduction to ethical issues that affect software engineering.

• Case studies
• An introduction to three examples that are used in this course.

Software Engineering

• The economies of ALL developed nations are dependent on software.
• More and more systems are software controlled.
• Software engineering is concerned with theories, methods and tools

for professional software development.
• Expenditure on software represents a significant fraction of Gross

National Product (GNP) in all developed countries.

Software Costs

• Software costs often dominate computer system costs.
• Costs of software on a PC are often greater than the hardware cost.
• Software costs more to maintain than it does to develop. For systems

with a long life, maintenance costs may be several times development
costs.
• Software engineering is concerned with cost-effective software

development.

Software Project Failure

• Increasing system complexity
• As new software engineering techniques help us to build larger, more

complex systems, the demands change. Systems have to be built and
delivered more quickly; larger, even more complex systems are required;
systems have to have new capabilities that were previously thought to be
impossible.

• Failure to use software engineering methods
• It is fairly easy to write computer programs without using software

engineering methods and techniques.
• Many companies have drifted into software development as their products

and services have evolved. They do not use software engineering methods in
their everyday work. Consequently, their software is often more expensive
and less reliable than it should be.

Professional Software Development

Question Answer

What is software? Computer programs and associated documentation. Software products may be
developed for a particular customer or may be developed for a general market.

What are the attributes of good software? Good software should deliver the required functionality and performance to the user
and should be maintainable, dependable and usable.

What is software engineering? Software engineering is an engineering discipline that is concerned with all aspects of
software production.

What are the fundamental software
engineering activities?

Software specification, software development, software validation and software
evolution.

What is the difference between software
engineering and computer science?

Computer science focuses on theory and fundamentals; software engineering is
concerned with the practicalities of developing and delivering useful software.

What is the difference between software
engineering and system engineering?

System engineering is concerned with all aspects of computer-based systems
development including hardware, software and process engineering. Software
engineering is part of this more general process.

FAQs About Software Engineering

Question Answer
What are the key challenges facing
software engineering?

Coping with increasing diversity, demands for reduced delivery times and developing
trustworthy software.

What are the costs of software
engineering?

Roughly 60% of software costs are development costs, 40% are testing costs. For custom
software, evolution costs often exceed development costs.

What are the best software engineering
techniques and methods?

While all software projects have to be professionally managed and developed, different
techniques are appropriate for different types of system.

For example, games should always be developed using a series of prototypes whereas
safety critical control systems require a complete and analyzable specification to be
developed. You can’t, therefore, say that one method is better than another.

What differences has the web made to
software engineering?

The web has led to the availability of software services and the possibility of developing
highly distributed service-based systems. Web-based systems development has led to
important advances in programming languages and software reuse.

FAQs About Software Engineering

Software Products

• Software engineers are concerned with developing software products, that is,
software that can be sold to a customer. There are two kinds of software product:
• Generic products - Stand-alone systems that are marketed and sold to any

customer who wishes to buy them.
• Examples – PC software such as graphics programs, project management tools; CAD

software; software for specific markets such as appointments systems for dentists.
• The specification of what the software should do is owned by the software developer and

decisions on software change are made by the developer.
• Customized products - Software that is commissioned by a specific customer to

meet their own needs.
• Examples – embedded control systems, air traffic control software, traffic monitoring

systems.
• The specification of what the software should do is owned by the customer for the software

and they make decisions on software changes that are required.

Attributes of Good Software

• When we talk about the quality of professional software, we have to consider
that the software is used and changed by people apart from its developers.
• Quality is therefore not just concerned with what the software does. Rather, it

has to include the software’s behavior while it is executing and the structure and
organization of the system programs and associated documentation.
• This is reflected in the software’s quality or non-functional attributes.

• Examples of these attributes are the software’s response time to a user query
and the understandability of the program code.
• The specific set of attributes that you might expect from a software system

obviously depends on its application. Therefore, an aircraft control system must
be safe, an interactive game must be responsive, a telephone switching system
must be reliable, and so on.

Essential Attributes of Good Software
Product characteristic Description

Maintainability

Software should be written in such a way so that it can evolve to meet the
changing needs of customers.

This is a critical attribute because software change is an inevitable
requirement of a changing business environment.

Dependability and security

Software dependability includes a range of characteristics including reliability,
security and safety.

Dependable software should not cause physical or economic damage in the
event of system failure. Malicious users should not be able to access or
damage the system.

Efficiency
Software should not make wasteful use of system resources such as memory
and processor cycles. Efficiency therefore includes responsiveness, processing
time, memory utilisation, etc.

Acceptability

Software must be acceptable to the type of users for which it is designed.

This means that it must be understandable, usable and compatible with other
systems that they use.

Software Engineering

• Software engineering is an engineering discipline that is concerned
with all aspects of software production from the early stages of
system specification through to maintaining the system after it has
gone into use.
• Engineering discipline
• Using appropriate theories and methods to solve problems bearing in mind

organizational and financial constraints.

• All aspects of software production
• Not just technical process of development. Also project management and the

development of tools, methods etc. to support software production.

Importance of Software Engineering

• More and more, individuals and society rely on advanced software
systems. We need to be able to produce reliable and trustworthy
systems economically and quickly.
• It is usually cheaper, in the long run, to use software engineering

methods and techniques for software systems rather than just write
the programs as if it was a personal programming project. For most
types of system, the majority of costs are the costs of changing the
software after it has gone into use.

Software Process Activities

• A software process is the sequence of activities that leads to the
production of a software product.
• Four fundamental activities are common to all software processes:
• Software specification, where customers and engineers define the software

that is to be produced and the constraints on its operation.
• Software development, where the software is designed and programmed.
• Software validation, where the software is checked to ensure that it is what

the customer requires.
• Software evolution, where the software is modified to reflect changing

customer and market requirements.

General Issues that Affect Software

• Heterogeneity – Increasingly, systems are required to operate as distributed systems
across networks that include different types of computer and mobile devices.

• Business and social change – Business and society are changing incredibly quickly as
emerging economies develop and new technologies become available. They need to be
able to change their existing software and to rapidly develop new software.

• Security and trust – As software is intertwined with all aspects of our lives, it is essential
that we can trust that software.

• Scale – Software has to be developed across a very wide range of scales, from very small
embedded systems in portable or wearable devices through to Internet-scale, cloud-
based systems that serve a global community.
To address these challenges, we will need new tools and techniques as well as

innovative ways of combining and using existing software engineering methods.

Software Engineering Diversity

• Software engineering is a systematic approach to the production of
software that takes into account practical cost, schedule, and
dependability issues, as well as the needs of software customers and
producers.
• There are many different types of software system and there is no

universal set of software techniques that is applicable to all of these.
• The software engineering methods and tools used depend on the

type of application being developed, the requirements of the
customer and the background of the development team.

Application Types

• Stand-alone applications
These are application systems that run on a local computer, such as a PC. They include
all necessary functionality and do not need to be connected to a network.

• Interactive transaction-based applications
Applications that execute on a remote computer and are accessed by users from their
own PCs or terminals. These include web applications such as e-commerce
applications.

• Embedded control systems
These are software control systems that control and manage hardware devices.
Numerically, there are probably more embedded systems than any other type of
system.

• Batch processing systems
These are business systems that are designed to process data in large batches. They
process large numbers of individual inputs to create corresponding outputs.

Application Types – Cont’d

• Entertainment systems
These are systems that are primarily for personal use and which are intended to
entertain the user.

• Systems for modelling and simulation
• These are systems that are developed by scientists and engineers to model physical

processes or situations, which include many, separate, interacting objects.

• Data collection systems
• These are systems that collect data from their environment using a set of sensors

and send that data to other systems for processing.

• Systems of systems
• These are systems that are composed of a number of other software systems.

Software Engineering Fundamentals

Some fundamental principles apply to all types of software system,
irrespective of the development techniques used:

• Systems should be developed using a managed and understood development
process. Of course, different processes are used for different types of software.

• Dependability and performance are important for all types of system.
• Understanding and managing the software specification and requirements (what the

software should do) are important.
• Where appropriate, you should reuse software that has already been developed

rather than write new software.
• These fundamental notions of process, dependability, requirements,

management, and reuse are important themes. Different methods reflect
them in different ways, but they underlie all professional software
development.

Internet Software Engineering

• The Web is now a platform for running application and organizations are
increasingly developing web-based systems rather than local systems.
• Before the web, business applications were mostly monolithic running on

single computers. Communications were local, within an organization.
• Now, software is highly distributed. Business applications are not

programmed from scratch but involve reuse of components and programs.
• Web services (discussed in later in the course) allow application

functionality to be accessed over the web.
• Cloud computing is an approach to the provision of computer services

where applications run remotely on the ‘cloud’.
• Users do not buy software but pay according to use.

Web-based Software Engineering

• Web-based systems are complex distributed systems but the
fundamental principles of software engineering discussed previously
are as applicable to them as they are to any other types of system.
• The fundamental ideas of software engineering apply to web-based

software in the same way that they apply to other types of software
system.

Web Software Engineering

• Software reuse
Software reuse is the dominant approach for constructing web-based systems. When
building these systems, you think about how you can assemble them from pre-existing
software components and systems.

• Incremental and agile development
Web-based systems should be developed and delivered incrementally. It is now
generally recognized that it is impractical to specify all the requirements for such
systems in advance.

• Service-oriented systems
Software may be implemented using service-oriented software engineering, where the
software components are stand-alone web services.

• Rich interfaces
Interface development technologies such as AJAX and HTML5 have emerged that
support the creation of rich interfaces within a web browser.

Software Engineering Ethics

• Software engineering is carried out within a social and legal
framework that limits the freedom of people working in that area.
• Software engineering involves wider responsibilities than simply the

application of technical skills.
• Software engineers must behave in an honest and ethically

responsible way if they are to be respected as professionals.
• Ethical behaviour is more than simply upholding the law but involves

following a set of principles that are morally correct.

Software Engineering Ethics

Issues of Professional Responsibility

• Confidentiality
Engineers should normally respect the confidentiality of their employers or clients irrespective
of whether or not a formal confidentiality agreement has been signed.

• Competence
Engineers should not misrepresent their level of competence. They should not knowingly
accept work which is outside their competence.

• Intellectual property rights
Engineers should be aware of local laws governing the use of intellectual property such as
patents, copyright, etc. They should be careful to ensure that the intellectual property of
employers and clients is protected.

• Computer misuse
Software engineers should not use their technical skills to misuse other people’s computers.
Computer misuse ranges from relatively trivial (game playing on an employer’s machine, say) to
extremely serious (dissemination of viruses).

ACM/IEEE Code of Ethics

• The professional societies in the US have cooperated to produce a
code of ethical practice.
• Members of these organisations sign up to the code of practice when

they join.
• The Code contains eight principles related to the behaviour of and

decisions made by professional software engineers, including
practitioners, educators, managers, supervisors and policy makers, as
well as trainees and students of the profession.

Rationale for the Code of Ethics

• Computers have a central and growing role in commerce, industry,
government, medicine, education, entertainment and society at large.
• Software engineers are those who contribute by direct participation or by

teaching, to the analysis, specification, design, development, certification,
maintenance and testing of software systems.
• Because of their roles in developing software systems, software engineers

have significant opportunities to do good or cause harm, to enable others
to do good or cause harm, or to influence others to do good or cause harm.
• To ensure, as much as possible, that their efforts will be used for good,

software engineers must commit themselves to making software
engineering a beneficial and respected profession.

Ethical Dilemmas

• Disagreement in principle with the policies of
senior management.
• Your employer acts in an unethical way and

releases a safety-critical system without finishing
the testing of the system.
• Participation in the development of military

weapons systems or nuclear systems.

ht
tp

s:/
/w

w
w.

yo
ut

ub
e.

co
m

/w
at

ch
?v

=9
w

f_
2K

YR
PW

Q

https://www.youtube.com/watch?v=9wf_2KYRPWQ

Case Studies

Case Studies

• A personal insulin pump
An embedded system in an insulin pump used by diabetics to maintain blood
glucose control.

• Mentcare: a mental health case patient management system
A system used to maintain records of people receiving care for mental health
problems.

• A wilderness weather station
A data collection system that collects data about weather conditions in remote
areas.

• iLearn: a digital learning environment
A system to support learning in schools

Insulin Pump Control System

• Collects data from a blood sugar sensor and calculates the amount of
insulin required to be injected.
• Calculation based on the rate of change of blood sugar levels.
• Sends signals to a micro-pump to deliver the correct dose of insulin.
• Safety-critical system as low blood sugars can lead to brain

malfunctioning, coma and death; high-blood sugar levels have long-
term consequences such as eye and kidney damage.

Insulin Pump Hardware Architecture

Needle
assembly

Sensor

Display1 Display2

Alarm

Pump Clock

Controller

Power supply

Insulin reservoir
• A software-controlled insulin delivery

system uses a microsensor embedded in
patient to measure some blood parameter
that is proportional to the sugar level.

• This is then sent to the pump controller to
compute the sugar level and the amount
of insulin that is needed.

• It then sends signals to a miniaturized
pump to deliver the insulin via a
permanently attached needle.

UML Activity Model of the Insulin Pump

Analyse sensor
reading

Blood
sensor

Insulin
pump

Blood
sugar

Compute
insulin

Insulin
dose

Insulin
log

Log doseCompute pump
commands

Pump
data

Control insulin
pump

illustrates how the software transforms an input blood sugar level to a sequence
of commands that drive the insulin pump

Essential High-Level Requirements

• The system shall be available to deliver insulin when required.
• The system shall perform reliably and deliver the correct amount of

insulin to counteract the current level of blood sugar.
• The system must therefore be designed and implemented to ensure

that the system always meets these requirements.

Mentcare: A patient information system for
mental health care
• A patient information system to support mental health care is a

medical information system that maintains information about
patients suffering from mental health problems and the treatments
that they have received.
• Most mental health patients do not require dedicated hospital

treatment but need to attend specialist clinics regularly where they
can meet a doctor who has detailed knowledge of their problems.
• To make it easier for patients to attend, these clinics are not just run

in hospitals. They may also be held in local medical practices or
community centres.

Mentcare

• Mentcare is an information system that
is intended for use in clinics.
• It makes use of a centralized database

of patient information but has also
been designed to run on a PC, so that it
may be accessed and used from sites
that do not have secure network
connectivity.
• When the local systems have secure

network access, they use patient
information in the database but they
can download and use local copies of
patient records when they are
disconnected.

Mentcare
client

Mentcare server

Patient database

Mentcare
client

Mentcare
client

Network

Mentcare Goals

• To generate management information that allows health service
managers to assess performance against local and government
targets.
• To provide medical staff with timely information to support the

treatment of patients.

Organization of the Mentcare System

Mentcare
client

Mentcare server

Patient database

Mentcare
client

Mentcare
client

Network

Key Features of the Mentcare System

• Individual care management
Clinicians can create records for patients, edit the information in the system, view
patient history, etc. The system supports data summaries so that doctors can quickly
learn about the key problems and treatments that have been prescribed.

• Patient monitoring
The system monitors the records of patients that are involved in treatment and issues
warnings if possible problems are detected.

• Administrative reporting
The system generates monthly management reports showing the number of patients
treated at each clinic, the number of patients who have entered and left the care
system, number of patients sectioned, the drugs prescribed and their costs, etc.

Mentcare System Concerns

• Privacy
• It is essential that patient information is confidential and is never disclosed to

anyone apart from authorised medical staff and the patient themselves.
• Safety
• Some mental illnesses cause patients to become suicidal or a danger to other

people. Wherever possible, the system should warn medical staff about
potentially suicidal or dangerous patients.
• The system must be available when needed otherwise safety may be

compromised and it may be impossible to prescribe the correct medication to
patients.

Wilderness Weather Station

• The government of a country with large areas of wilderness decides
to deploy several hundred weather stations in remote areas.
• Weather stations collect data from a set of instruments that measure

temperature and pressure, sunshine, rainfall, wind speed and wind
direction.
• The weather station includes a number of instruments that measure weather

parameters such as the wind speed and direction, the ground and air
temperatures, the barometric pressure and the rainfall over a 24-hour period.
• Each of these instruments is controlled by a software system that takes

parameter readings periodically and manages the data collected from the
instruments.

Weather Information System

• Weather Station System
This is responsible for collecting weather data,
carrying out some initial data processing and
transmitting it to the data management system.

• Data Management and Archiving System
This system collects the data from all of the
wilderness weather stations, carries out data
processing and analysis and archives the data.

• Station Maintenance System
This system can communicate by satellite with all
wilderness weather stations to monitor the health
of these systems and provide reports of problems.

«system»
Data management

and archiving

«system»
Station maintenance

«system»
Weather station

Additional Software Functionality

• Monitor the instruments, power and communication hardware and
report faults to the management system.
• Manage the system power, ensuring that batteries are charged

whenever the environmental conditions permit but also that
generators are shut down in potentially damaging weather
conditions, such as high wind.
• Support dynamic reconfiguration where parts of the software are

replaced with new versions and where backup instruments are
switched into the system in the event of system failure.

iLearn: A digital Learning Environment

• A digital learning environment is a framework in which a set of
general-purpose and specially designed tools for learning may be
embedded plus a set of applications that are geared to the needs of
the learners using the system.
• The tools included in each version of the environment are chosen by

teachers and learners to suit their specific needs.
• These can be general applications such as spread sheets, learning

management applications such as a Virtual Learning Environment (VLE) to
manage homework submission and assessment, games and simulations.

iLearn: A Service-Oriented System

• The system is a service-oriented system with all system components
considered to be a replaceable service.
• This allows the system to be updated incrementally as new services

become available.
• It also makes it possible to rapidly configure the system to create

versions of the environment for different groups such as very young
children who cannot read, senior students, etc.

iLearn Services

• Utility services that provide basic application-
independent functionality and which may be
used by other services in the system.
• Application services that provide specific

applications such as email, conferencing, photo
sharing and access to educational content such
as scientific films or historical resources.
• Configuration services that are used to adapt the

environment with a specific set of application
services and do define how services are shared
between students, teachers and their parents.

Authentication

Browser-based user interface

Configuration services

Group
management

Application
management

Identity
management

User storage
Logging and monitoring

Application storage
Interfacing

Search

Utility services

Application services

iLearn app

Email Messaging Video conferencing Newspaper archive

Word processing Simulation Video storage Resource finder

Spreadsheet Virtual learning environment History archive

iLearn: Service Integration

• The environment has been designed so that services can be replaced as
new services become available and to provide different versions of the
system that are suited for the age of the users.
• This means that the system has to support two levels of service integration:

• Integrated services are services which offer an API (application programming
interface) and which can be accessed by other services through that API. Direct
service-to-service communication is therefore possible.

• Independent services are services which are simply accessed through a browser
interface and which operate independently of other services. Information can only
be shared with other services through explicit user actions such as copy and paste;
re-authentication may be required for each independent service.

Key Points

• Software engineering is an engineering discipline that is concerned
with all aspects of software production.
• Essential software product attributes are maintainability,

dependability and security, efficiency and acceptability.
• The high-level activities of specification, development, validation and

evolution are part of all software processes.
• The fundamental notions of software engineering are universally

applicable to all types of system development.

Key Points

• There are many different types of system and each requires
appropriate software engineering tools and techniques for their
development.
• The fundamental ideas of software engineering are applicable to all

types of software system.
• Software engineers have responsibilities to the engineering

profession and society. They should not simply be concerned with
technical issues.
• Professional societies publish codes of conduct which set out the

standards of behaviour expected of their members.

