
SWEN 6301 Software Construction
Module 2: Software Development Processes

Ahmed Tamrawi

Copyright notice: 1- care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.
2- many slides are adopted with permission from Ian Sommerville and Mustafa Misir ‘s lecture notes on Software Engineering course and Modern Software Development Technology course.

What does the program print?

public class JavaPuzzle {
public static void main(String[] args) {

final long MICROS_PER_DAY = 24 * 60 * 60 * 1000 * 1000;
final long MILLIS_PER_DAY = 24 * 60 * 60 * 1000;
System.out.println(MICROS_PER_DAY / MILLIS_PER_DAY);

}
}

1
2
3
4
5
6
7

What does the program print?

public class JavaPuzzle {
public static void main(String[] args) {

final long MICROS_PER_DAY = 24 * 60 * 60 * 1000 * 1000;
final long MILLIS_PER_DAY = 24 * 60 * 60 * 1000;
System.out.println(MICROS_PER_DAY / MILLIS_PER_DAY);

}
}

1
2
3
4
5
6
7

It prints “5”!
How to fix it?

What does the program print?

public class JavaPuzzle {
public static void main(String[] args) {

final long MICROS_PER_DAY = 24L * 60 * 60 * 1000 * 1000;
final long MILLIS_PER_DAY = 24L * 60 * 60 * 1000;
System.out.println(MICROS_PER_DAY / MILLIS_PER_DAY);

}
}

1
2
3
4
5
6
7

When working with large numbers, watch out for
overflow—it’s a silent killer.

Software Processes
A structured set of activities required to develop a software system

Topics Covered

• Software Process Models
• Process Activities
• Coping with Change
• Process Improvement

The Software Process

• Many different software processes but all involve:
• Specification – defining what the system should do;
• Design and implementation – defining the organization of the system and implementing the

system;
• Validation – checking that it does what the customer wants;
• Evolution – changing the system in response to changing customer needs.

• These activities are complex activities in themselves, and they include sub-activities such
as requirements validation, architectural design, and unit testing.

• Processes also include other activities, such as software configuration management and
project planning that support production activities.

• A software process model is an abstract representation of a process. It presents a
description of a process from some particular perspective.

Software Process Descriptions

• When we describe and discuss processes, we usually talk about the
activities in these processes such as specifying a data model,
designing a user interface, etc. and the ordering of these activities.
• Process descriptions may also include:
• Products, which are the outcomes of a process activity;
• Roles, which reflect the responsibilities of the people involved in the process;
• Pre- and post-conditions, which are statements that are true before and after

a process activity has been enacted or a product produced.
• For example, before architectural design begins, a precondition may be that the

consumer has approved all requirements; after this activity is finished, a postcondition
might be that the UML models describing the architecture have been reviewed.

Software Processes

• Software processes are complex and, like all intellectual and creative processes
rely on people making decisions and judgments.
• There is no universal process that is right for all kinds of software.
• Most software companies have developed their own development processes.
• Processes have evolved to take advantage of the capabilities of the software

developers in an organization and the characteristics of the systems that are
being developed.
• For safety-critical systems, a very structured development process is required

where detailed records are maintained.
• For business systems, with rapidly changing requirements, a more flexible, agile

process is likely to be better.

Plan-Driven and Agile Processes

• Professional software development is a managed activity, so
planning is an inherent part of all processes.
• Plan-driven processes are processes where all of the process activities

are planned in advance and progress is measured against this plan.
• In agile processes, planning is incremental and it is easier to change

the process to reflect changing customer requirements.
• In practice (e.g., large systems), most practical processes include

elements of both plan-driven and agile approaches.
• There are no right or wrong software processes.

Software Process Models

• The waterfall model
Plan-driven model. Separate and distinct phases of specification and
development.

• Incremental development
Specification, development and validation are interleaved. May be plan-driven
or agile.

• Integration and configuration
The system is assembled from existing configurable (reusable) components.
May be plan-driven or agile.

• In practice, most large systems are developed using a process that
incorporates elements from all of these models.

sometimes called a Software Development Life Cycle or SDLC model

Software Process Models

• Various attempts have been made to develop “universal” process
models that draw on all of these general models.
• One of the best known of these universal models is the Rational

Unified Process (RUP) (Krutchen 2003), which was developed by
Rational, a U.S. software engineering company.
• The RUP is a flexible model that can be instantiated in different ways

to create processes that resemble any of the general process models
discussed here.
• The RUP has been adopted by some large software companies

(notably IBM), but it has not gained widespread acceptance.

The Waterfall Model

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

The system’s services, constraints, and goals are established by consultation with system
users. They are then defined in detail and serve as a system specification.

The systems design process allocates the requirements to either hardware or software systems. It establishes
an overall system architecture. Software design involves identifying and describing the fundamental software
system abstractions and their relationships.

the software design is realized as a set of programs or program units. Unit
testing involves verifying that each unit meets its specification.

The individual program units or programs are integrated and tested as a complete
system to ensure that the software requirements have been met. After testing, the
software system is delivered to the customer.

Normally, this is the longest life-cycle phase. The system is installed and put into practical use.
Maintenance involves correcting errors that were not discovered in earlier stages of the life
cycle, improving the implementation of system units, and enhancing the system’s services as
new requirements are discovered.

The Waterfall Model

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

The main drawback of the waterfall model is the difficulty of accommodating change after the
process is underway. In principle, a phase has to be complete before moving onto the next phase.

In principle, the result of each phase in the waterfall model is one or
more documents that are approved (“signed off”). The following phase

should not start until the previous phase has finished.

The Waterfall Model

• In reality, software has to be flexible and accommodate change as it is
being developed.
• The need for early commitment and system rework when changes are

made means that the waterfall model is only appropriate for some types of
system:
• Embedded systems where the software has to interface with hardware systems

(hardware inflexibility).
• Critical systems where there is a need for extensive safety and security analysis of

the software specification and design.
• Large software systems that are part of broader engineering systems developed by

several partner companies.
• Formal Development Model a variant of waterfall model (seL4 microkernel)

Waterfall Model Problems

• Inflexible partitioning of the project into distinct stages makes it
difficult to respond to changing customer requirements.
• Therefore, this model is only appropriate when the requirements are well-

understood and changes will be fairly limited during the design process.
• Few business systems have stable requirements.

• The waterfall model is mostly used for large systems engineering
projects where a system is developed at several sites.
• In those circumstances, the plan-driven nature of the waterfall model helps

coordinate the work.

Incremental Development

Concurrent
activities

Validation
Final

version

Development
Intermediate

versions

Specification
Initial

version

Outline
description

Incremental development is based on the idea of developing an initial implementation, getting feedback from users
and others, and evolving the software through several versions until the required system has been developed

Each increment or version of the system
incorporates some of the functionality that is
needed by the customer. The early increments of
the system include the most important or most
urgently required functionality. This means that
the customer or user can evaluate the system at a
relatively early stage in the development to see if it
delivers what is required.

Incremental Development Benefits

• The cost of accommodating changing customer requirements is
reduced.
• The amount of analysis and documentation that has to be redone is much less

than is required with the waterfall model.
• It is easier to get customer feedback on the development work that

has been done.
• Customers can comment on demonstrations of the software and see how

much has been implemented.
• More rapid delivery and deployment of useful software to the

customer is possible.
• Customers are able to use and gain value from the software earlier than is

possible with a waterfall process.

Incremental Development Problems

• The process is not visible. (from documentation perspective)
• Managers need regular deliverables to measure progress. If systems are

developed quickly, it is not cost-effective to produce documents that reflect
every version of the system.

• System structure tends to degrade as new increments are added.
• Unless time and money is spent on refactoring to improve the software,

regular change tends to corrupt its structure. Incorporating further software
changes becomes increasingly difficult and costly.

• The problems of incremental development become particularly acute
for large, complex, long-lifetime systems, where different teams
develop different parts of the system. Remember that Large systems
need a stable framework or architecture.

Integration and Configuration

• Based on software reuse where systems are integrated from existing
components or application systems (sometimes called COTS -
Commercial-off-the-shelf) systems).
• Reused elements may be configured to adapt their behaviour and

functionality to a user’s requirements
• Reuse is now the standard approach for building many types of

business system.

Types of Reusable Software

• Stand-alone application systems (sometimes called COTS) that are
configured for use in a particular environment.
• Collections of objects that are developed as a package to be

integrated with a component framework such as Java Spring
Framework, .NET, or J2EE.
• Web services that are developed according to service standards and

which are available for remote invocation.

Reuse-Oriented Software Engineering

Requirements
specification

Software
discovery

Software
evaluation

Requirements
refinement

Configure
application

system

Adapt
components

Integrate
system

Develop new
components

Application system
available

Components
available

The initial requirements for the
system are proposed. These do not
have to be elaborated in detail.

A search is made for components
and systems that provide the
functionality required. The requirements are refined using information

about the reusable components and applications
that have been discovered. The requirements are
modified to reflect the available components, and
the system specification is re defined

Reuse-Oriented Software Engineering

• Advantages:
• Reduced costs and risks as less software is developed from scratch.
• Faster delivery and deployment of system.

• Disadvantages:
• Requirements compromises are inevitable so system may not meet real needs

of users.
• Loss of control over evolution of reused system elements.

Process Activities

Process Activities

• Real software processes are inter-leaved sequences of technical,
collaborative and managerial activities with the overall goal of specifying,
designing, implementing and testing a software system.
• The four basic process activities of specification, development, validation

and evolution are organized differently in different development
processes.
• For example, in the waterfall model, they are organized in sequence, whereas in

incremental development they are interleaved.
• Generally, processes are now tool-supported.

• This means that software developers may use a range of software tools to help
them, such as requirements management systems, design model editors, program
editors, automated testing tools, and debuggers.

Software Specification

• The process of establishing what
services are required and the
constraints on the system’s operation
and development.
• Requirements engineering process
• Requirements elicitation and analysis

• What do the system stakeholders require or
expect from the system?

• Requirements specification
• Defining the requirements in detail

• Requirements validation
• Checking the validity of the requirements

Requirements
elicitation and

analysis
Requirements
specification

Requirements
validation

System
descriptions

User and system
requirements

Requirements
document

Software Design and Implementation

• The process of converting the system specification into an executable
system.
• Software design
• Design a software structure that realises the specification;

• Implementation
• Translate this structure into an executable program;

• The activities of design and implementation are closely related and
may be inter-leaved.

Design Activities

• Architectural design, where you identify the
overall structure of the system, the principal
components (subsystems or modules), their
relationships and how they are distributed.
• Database design, where you design the

system data structures and how these are
to be represented in a database.
• Interface design, where you define the

interfaces between system components.
• Component selection and design, where you

search for reusable components. If
unavailable, you design how it will operate.

Interface
design

Component
design

System
architecture

Database
specification

Interface
specification

Requirements
specification

Architectural
design

Component
specification

Platform
information

Data
description

Design inputs

Design activities

Design outputs

Database design

The design process activities are both interleaved and interdependent. New information about the design is
constantly being generated, and this affects previous design decisions. Design rework is therefore inevitable.

System Implementation

• The software is implemented either by developing a program or programs
or by configuring an application system.
• Software development tools may be used to generate a skeleton program

from a design.
• Design and implementation are interleaved activities for most types of

software system.
• Programming is an individual activity with no standard process.
• Normally, programmers carry out some testing of the code they have

developed. This often reveals program defects (bugs) that must be
removed from the program. Finding and fixing program defects is called
debugging.

Software Validation

• Verification and validation (V & V) is intended to show that a system
conforms to its specification and meets the requirements of the
system customer.
• Involves checking and review processes and system testing.
• System testing involves executing the system with test cases that are

derived from the specification of the real data to be processed by the
system.
• Testing is the most commonly used V & V activity.

Testing Stages

• Component testing
• Individual components are tested independently;
• Components may be functions or objects or coherent groupings of these

entities.

• System testing
• Testing of the system as a whole. Testing of emergent properties is

particularly important.

• Customer testing
• Testing with customer data to check that the system meets the customer’s

needs.

System testing
Component

 testing
Acceptance

testing

Testing Phases in a Plan-Driven Software
Process (V-model)

Requirements
specification

System
specification

Acceptance
test

System
integration test

Sub-system
integration test

System
design

Detailed
design

Service

Module and
unit code
and test

Acceptance
test plan

System
integration
test plan

Sub-system
integration
test plan

Software Evolution

• Software is inherently flexible and can change.
• As requirements change through changing business circumstances,

the software that supports the business must also evolve and change.
• Although there has been a demarcation between development and

evolution (maintenance) this is increasingly irrelevant as fewer and
fewer systems are completely new.

Assess existing
systems

Define system
requirements

Propose system
changes

Modify
systems

New
system

Existing
systems

Coping with Change

Coping with Change

• Change is inevitable in all large software projects.
• Business changes lead to new and changed system requirements
• New technologies open up new possibilities for improving implementations
• Changing platforms require application changes

• Change leads to rework so the costs of change include both rework
(e.g. re-analyzing requirements) as well as the costs of implementing
new functionality.

Reducing the Costs of Rework

• Change anticipation, where the software process includes activities
that can anticipate possible changes before significant rework is
required.
• For example, a prototype system may be developed to show some key

features of the system to customers.

• Change tolerance, where the process is designed so that changes can
be accommodated at relatively low cost.
• This normally involves some form of incremental development. Proposed

changes may be implemented in increments that have not yet been
developed. If this is impossible, then only a single increment (a small part of
the system) may have be altered to incorporate the change.

Coping with Changing Requirements

• System prototyping, where a version of the system or part of the
system is developed quickly to check the customer’s requirements
and the feasibility of design decisions. This approach supports change
anticipation.
• Incremental delivery, where system increments are delivered to the

customer for comment and experimentation. This supports both
change avoidance and change tolerance.

Software Prototyping

• A prototype is an initial version of a system used to demonstrate
concepts and try out design options.
• A prototype can be used in:
• The requirements engineering process to help with requirements elicitation

and validation;
• In design processes to explore options and develop a UI design;
• In the testing process to run back-to-back tests.

Benefits of Prototyping

• Improved system usability.
• A closer match to users’ real needs.
• Improved design quality.
• Improved maintainability.
• Reduced development effort.

Prototype Development

• May be based on rapid prototyping languages or tools
• May involve leaving out functionality
• Prototype should focus on areas of the product that are not well-understood;
• Error checking and recovery may not be included in the prototype;
• Focus on functional rather than non-functional requirements such as

reliability and security.

Establish
prototype
objectives

Define
prototype

functionality

Develop
prototype

Evaluate
prototype

Prototyping
plan

Outline
definition

Executable
prototype

Evaluation
report

Throw-Away Prototypes

• Prototypes should be discarded after development as they are
not a good basis for a production system:
• It may be impossible to tune the system to meet non-functional

requirements;
• Prototypes are normally undocumented;
• The prototype structure is usually degraded through rapid change;
• The prototype probably will not meet normal organizational quality

standards.

Incremental Delivery

• Rather than deliver the system as a single delivery, the development
and delivery is broken down into increments with each increment
delivering part of the required functionality.
• User requirements are prioritised and the highest priority

requirements are included in early increments.
• Once the development of an increment is started, the requirements

are frozen though requirements for later increments can continue to
evolve.

Incremental Development and Delivery

• Incremental development
• Develop the system in increments and evaluate each increment before

proceeding to the development of the next increment;
• Normal approach used in agile methods;
• Evaluation done by user/customer proxy.

• Incremental delivery
• Deploy an increment for use by end-users;
• More realistic evaluation about practical use of software;
• Difficult to implement for replacement systems as increments have less

functionality than the system being replaced.

Incremental Delivery

Design system
architecture

Define outline
 requirements

Assign requirements
 to increments

System
incomplete?

Final
system

Develop system
increment

Validate
increment

Integrate
increment

Validate
system

Deploy
increment

System
complete?

Incremental Delivery Advantages

• Customer value can be delivered with each increment so system
functionality is available earlier.
• Early increments act as a prototype to help elicit requirements for

later increments.
• Lower risk of overall project failure.
• The highest priority system services tend to receive the most testing.

Incremental Delivery Problems

• Most systems require a set of basic facilities that are used by different
parts of the system.
• As requirements are not defined in detail until an increment is to be

implemented, it can be hard to identify common facilities that are needed
by all increments.

• The essence of iterative processes is that the specification is
developed in conjunction with the software.
• However, this conflicts with the procurement model of many organizations,

where the complete system specification is part of the system development
contract.

Process Improvement

Process Improvement

• Many software companies have turned to software process
improvement as a way of enhancing the quality of their software,
reducing costs or accelerating their development processes.
• Process improvement means understanding existing processes and

changing these processes to increase product quality and/or reduce
costs and development time.

Approaches to Improvement

• The process maturity approach, which focuses on improving process
and project management and introducing good software engineering
practice.
• The level of process maturity reflects the extent to which good technical and

management practice has been adopted in organizational software
development processes.

• The agile approach, which focuses on iterative development and the
reduction of overheads in the software process.
• The primary characteristics of agile methods are rapid delivery of

functionality and responsiveness to changing customer requirements.

Process Improvement Activities

• Process measurement
You measure one or more attributes of the software
process or product. These measurements forms a
baseline that helps you decide if process improvements
have been effective.

• Process analysis
The current process is assessed, and process
weaknesses and bottlenecks are identified. Process
models (sometimes called process maps) that describe
the process may be developed.

• Process change
Process changes are proposed to address some of the
identified process weaknesses. These are introduced
and the cycle resumes to collect data about the
effectiveness of the changes.

Analyze

Measure

Change

Process Measurement

• Wherever possible, quantitative process data should be collected
• However, where organizations do not have clearly defined process standards

this is very difficult as you don’t know what to measure.
• A process may have to be defined before any measurement is possible.

• Process measurements should be used to assess process
improvements
• But this does not mean that measurements should drive the improvements.

The improvement driver should be the organizational objectives.

Process Metrics

• Time taken for process activities to be completed
• Example: Calendar time or effort to complete an activity or process.

• Resources required for processes or activities
• Example: Total effort in person-days.

• Number of occurrences of a particular event
• Example: Number of defects discovered.

SEI Capability Maturity Levels

Level 3
Defined

Level 2
Managed

Level 1
Initial

Level 4
Quantitatively

managed

Level 5
Optimizing

• Initial
• Essentially uncontrolled

• Managed
• Quality management strategies defined and used

• Defined
• Process management procedures and strategies

defined and used

• Repeatable
• Product management procedures defined and used

• Optimising
• Process improvement strategies defined and used

Key Points

• Software processes are the activities involved in producing a software
system. Software process models are abstract representations of
these processes.
• General process models describe the organization of software

processes.
• Examples of these general models include the ‘waterfall’ model, incremental

development, and reuse-oriented development.

• Requirements engineering is the process of developing a software
specification.

Key Points – Cont’d

• Design and implementation processes are concerned with
transforming a requirements specification into an executable
software system.
• Software validation is the process of checking that the system

conforms to its specification and that it meets the real needs of the
users of the system.
• Software evolution takes place when you change existing software

systems to meet new requirements. The software must evolve to
remain useful.
• Processes should include activities such as prototyping and

incremental delivery to cope with change.

Key Points – Cont’d

• Processes may be structured for iterative development and delivery
so that changes may be made without disrupting the system as a
whole.
• The principal approaches to process improvement are agile

approaches, geared to reducing process overheads, and maturity-
based approaches based on better process management and the use
of good software engineering practice.
• The SEI process maturity framework identifies maturity levels that

essentially correspond to the use of good software engineering
practice.

