
SWEN 6301 Software Construction
Module 3: Agile Development and Requirements

Engineering
Ahmed Tamrawi

Copyright notice: 1- care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.
2- many slides are adopted with permission from Ian Sommerville and Mustafa Misir ‘s lecture notes on Software Engineering course and Modern Software Development Technology course.

What does the program print?
public class JavaPuzzle {

public static void main(String[] args) {
print("Hello");

/*
* TODO: print World in unicode
* \u002A\u002F\u0070\u0072\u0069\u006E\u0074\u0028\u0022\u0043\u0072
* \u0075\u0065\u006C\u0022\u0029\u003B\u002F\u002A
*/
print("World");

}

private static void print(String s){
System.out.print(s + " ");

}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Agile Software Development

Topics Covered

• Agile methods

• Agile development techniques

• Agile project management

• Scaling agile methods

Rapid Software Development

• Rapid development and delivery is now often the most important
requirement for software systems
• Businesses operate in a fast – changing requirement and it is practically

impossible to produce a set of stable software requirements
• Software must evolve quickly to reflect changing business needs.

• Plan-driven development is essential for some types of system but
does not meet these business needs.

• Agile development methods emerged in the late 1990s whose aim
was to radically reduce the delivery time for working software
systems.

Agile Development

• Program specification, design and implementation are inter-leaved.

• The system is developed as a series of versions or increments with
stakeholders involved in version specification and evaluation.

• Frequent delivery of new versions for evaluation.

• Extensive tool support (e.g. automated testing tools) used to support
development.

• Minimal documentation – focus on working code.

Plan-Driven and Agile Development

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements change
requests

Plan-based development

Agile development

Requirements
engineering

Design and
implementation

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements change
requests

Plan-based development

Agile development

Requirements
engineering

Design and
implementation

Plan-Driven Development
• A plan-driven approach to software engineering is based

around separate development stages with the outputs
to be produced at each of these stages planned in
advance.

• Not necessarily waterfall model – plan-driven,
incremental development is possible.

• Iteration occurs within activities.

Agile Development
Specification, design, implementation and testing are inter-
leaved and the outputs from the development process are
decided through a process of negotiation during the
software development process.

Plan-Driven vs Agile Development

Agile Methods

Agile Methods

• Dissatisfaction with the overheads involved in software design methods of the
1980s and 1990s led to the creation of agile methods. These methods:
• Focus on the code rather than the design
• Are based on an iterative approach to software development
• Are intended to deliver working software quickly and evolve this quickly to meet changing

requirements.

• The aim of agile methods is to reduce overheads in the software process (e.g. by
limiting documentation) and to be able to respond quickly to changing
requirements without excessive rework.

The Principles of Agile Methods
Principle Description

Customer involvement
Customers should be closely involved throughout the development
process. Their role is provide and prioritize new system requirements
and to evaluate the iterations of the system.

Incremental delivery The software is developed in increments with the customer specifying
the requirements to be included in each increment.

People not process
The skills of the development team should be recognized and exploited.
Team members should be left to develop their own ways of working
without prescriptive processes.

Embrace change Expect the system requirements to change and so design the system to
accommodate these changes.

Maintain simplicity
Focus on simplicity in both the software being developed and in the
development process. Wherever possible, actively work to eliminate
complexity from the system.

Agile Method Applicability

• Product development where a software company is developing a
small or medium-sized product for sale.
• Virtually all software products and apps are now developed using an agile

approach

• Custom system development within an organization, where there is a
clear commitment from the customer to become involved in the
development process and where there are few external rules and
regulations that affect the software.

Agile Development Techniques

Extreme Programming

• A very influential agile method,
developed in the late 1990s, that
introduced a range of agile
development techniques.
• Extreme Programming (XP) takes an

‘extreme’ approach to iterative
development.
• New versions may be built several times

per day;
• Increments are delivered to customers

every 2 weeks;
• All tests must be run for every build and

the build is only accepted if tests run
successfully.

Break down
stories to tasks

Select user
stories for this

release
Plan release

Release
software

Evaluate
system

Develop/integrate/
test software

Extreme Programming Practices

Principle or practice Description

Incremental planning
Requirements are recorded on story cards and the stories to be included in a
release are determined by the time available and their relative priority. The
developers break these stories into development ‘Tasks’.

Small releases
The minimal useful set of functionality that provides business value is developed
first. Releases of the system are frequent and incrementally add functionality to
the first release.

Simple design Enough design is carried out to meet the current requirements and no more.

Test-first development An automated unit test framework is used to write tests for a new piece of
functionality before that functionality itself is implemented.

Refactoring
All developers are expected to re-factor the code continuously as soon as
possible code improvements are found. This keeps the code simple and
maintainable.

Extreme Programming Practices

Pair programming Developers work in pairs, checking each other’s work and providing the support
to always do a good job.

Collective ownership
The pairs of developers work on all areas of the system, so that no islands of
expertise develop and all the developers take responsibility for all of the code.
Anyone can change anything.

Continuous integration As soon as the work on a task is complete, it is integrated into the whole
system. After any such integration, all the unit tests in the system must pass.

Sustainable pace Large amounts of overtime are not considered acceptable as the net effect is
often to reduce code quality and medium term productivity

On-site customer

A representative of the end-user of the system (the customer) should be
available full time for the use of the XP team. In an extreme programming
process, the customer is a member of the development team and is responsible
for bringing system requirements to the team for implementation.

XP and Agile Principles

• Incremental development is supported through small, frequent system releases.
• Customer involvement means full-time customer engagement with the team.
• People not process through pair programming, collective ownership and a

process that avoids long working hours.
• Change supported through regular system releases.
• Maintaining simplicity through constant refactoring of code.

Influential XP Practices

• Extreme programming has a technical focus and is not easy to
integrate with management practice in most organizations.

• Consequently, while agile development uses practices from XP, the
method as originally defined is not widely used.

User Stories for Requirements

• In XP, a customer or user is part of the XP team and is responsible for
making decisions on requirements.

• User requirements are expressed as user stories or scenarios.
• These are written on cards and the development team break them

down into implementation tasks. These tasks are the basis of
schedule and cost estimates.

• The customer chooses the stories for inclusion in the next release
based on their priorities and the schedule estimates.

A ‘prescribing medication’ Story and Tasks

The record of the patient must be open for input. Click on the medication field and
select either ‘current medication’, ‘new medication’ or ‘formulary’.

If you select ‘current medication’, you will be asked to check the dose; If you wish to
change the dose, enter the new dose then confirm the prescription.

If you choose, ‘new medication’, the system assumes that you know which
medication you wish to prescribe. Type the first few letters of the drug name. You
will then see a list of possible drugs starting with these letters. Choose the required
medication. You will then be asked to check that the medication you have selected
is correct. Enter the dose then confirm the prescription.

If you choose ‘formulary’, you will be presented with a search box for the approved
formulary. Search for the drug required then select it. You will then be asked to
check that the medication you have selected is correct. Enter the dose then confirm
the prescription.

In all cases, the system will check that the dose is within the approved range and
will ask you to change it if it is outside the range of recommended doses.

After you have confirmed the prescription, it will be displayed for checking. Either
click ‘OK’ or ‘Change’. If you click ‘OK’, your prescription will be recorded on the audit
database. If you click ‘Change’, you reenter the ‘Prescribing medication’ process.

Prescribing medication

Task 1: Change dose of prescribed drug

Task 2: Formulary selection

Task 3: Dose checking

Dose checking is a safety precaution to check that
the doctor has not prescribed a dangerously small or
large dose.
Using the formulary id for the generic drug name,
lookup the formulary and retrieve the recommended
maximum and minimum dose.
Check the prescribed dose against the minimum and
maximum. If outside the range, issue an error
message saying that the dose is too high or too low.
If within the range, enable the ‘Confirm’ button.

Refactoring

• Conventional wisdom in software engineering is to design for change.
It is worth spending time and effort anticipating changes as this
reduces costs later in the life cycle.

• XP, however, maintains that this is not worthwhile as changes cannot
be reliably anticipated.

• Rather, it proposes constant code improvement (refactoring) to make
changes easier when they have to be implemented.

Refactoring

• Programming team look for possible software improvements and
make these improvements even where there is no immediate need for
them.

• This improves the understandability of the software and so reduces
the need for documentation.

• Changes are easier to make because the code is well-structured and
clear.

• However, some changes requires architecture refactoring, and this is
much more expensive.

Examples of Refactoring

• Re-organization of a class hierarchy to remove duplicate code.

• Tidying up and renaming attributes and methods to make them easier
to understand.

• The replacement of inline code with calls to methods that have been
included in a program library.

Test-First Development

• Testing is central to XP and XP has developed an approach where the
program is tested after every change has been made.

• XP testing features:
• Test-first development.
• Incremental test development from scenarios.
• User involvement in test development and validation.
• Automated test harnesses are used to run all component tests each time that

a new release is built.

Test-Driven Development

• Writing tests before code clarifies the requirements to be
implemented.

• Tests are written as programs rather than data so that they can be
executed automatically. The test includes a check that it has executed
correctly.
• Usually relies on a testing framework such as Junit.

• All previous and new tests are run automatically when new
functionality is added, thus checking that the new functionality has
not introduced errors.

Customer Involvement

• The role of the customer in the testing process is to help develop
acceptance tests for the stories that are to be implemented in the
next release of the system.

• The customer who is part of the team writes tests as development
proceeds. All new code is therefore validated to ensure that it is what
the customer needs.

• However, people adopting the customer role have limited time
available and so cannot work full-time with the development team.
• They may feel that providing the requirements was enough of a contribution

and so may be reluctant to get involved in the testing process.

Test Case Description for Dose Checking

Input:
1. A number in mg representing a single dose of the drug.
2. A number representing the number of single doses per day.

Tests:
1. Test for inputs where the single dose is correct but the frequency is too
high.
2. Test for inputs where the single dose is too high and too low.
3. Test for inputs where the single dose * frequency is too high and too low.
4. Test for inputs where single dose * frequency is in the permitted range.

Output:
OK or error message indicating that the dose is outside the safe range.

Test 4: Dose checking

Test Automation

• Test automation means that tests are written as executable
components before the task is implemented
• These testing components should be stand-alone, should simulate the

submission of input to be tested and should check that the result meets the
output specification.
• An automated test framework (e.g. Junit) is a system that makes it easy to

write executable tests and submit a set of tests for execution.

• As testing is automated, there is always a set of tests that can be
quickly and easily executed
• Whenever any functionality is added to the system, the tests can be run and

problems that the new code has introduced can be caught immediately.

Problems with Test-First Development

• Programmers prefer programming to testing and sometimes they
take short cuts when writing tests. For example, they may write
incomplete tests that do not check for all possible exceptions that
may occur.

• Some tests can be very difficult to write incrementally. For example,
in a complex user interface, it is often difficult to write unit tests for
the code that implements the ‘display logic’ and workflow between
screens.

• It difficult to judge the completeness of a set of tests. Although you
may have a lot of system tests, your test set may not provide
complete coverage.

Pair Programming

• Pair programming involves programmers working in pairs, developing
code together.

• This helps develop common ownership of code and spreads
knowledge across the team.

• It serves as an informal review process as each line of code is looked
at by more than 1 person.

• It encourages refactoring as the whole team can benefit from
improving the system code.

• In pair programming, programmers sit together at the same computer
to develop the software.

Pair Programming

• Pairs are created dynamically so that all team members work with
each other during the development process.

• The sharing of knowledge that happens during pair programming is
very important as it reduces the overall risks to a project when team
members leave.

• Pair programming is not necessarily inefficient and there is some
evidence that suggests that a pair working together is more efficient
than 2 programmers working separately.

Agile Project Management

Agile Project Management

• The principal responsibility of software project managers is to
manage the project so that the software is delivered on time and
within the planned budget for the project.
• The standard approach to project management is plan-driven.

Managers draw up a plan for the project showing what should be
delivered, when it should be delivered and who will work on the
development of the project deliverables.

• Agile project management requires a different approach, which is
adapted to incremental development and the practices used in agile
methods.

Scrum

• Scrum is an agile method that focuses on managing iterative
development rather than specific agile practices.

• There are three phases in Scrum.
• The initial phase is an outline planning phase where you establish the general

objectives for the project and design the software architecture.
• This is followed by a series of sprint cycles, where each cycle develops an

increment of the system.
• The project closure phase wraps up the project, completes required

documentation such as system help frames and user manuals and assesses
the lessons learned from the project.

SCRUM
A framework for managing work with an emphasis on software development. It is designed for teams of developers (3 to 9) who
break their work into actions that can be completed within timeboxed iterations, called sprints (30 days or less, most commonly

two weeks) and track progress and re-plan in 15-minute stand-up meetings, called daily scrums.

Purpose
• Synchronize activities and create a plan for next 24 hrs.
• Track Progress
Agenda – Each Team member explains:
• What has been accomplished since last meeting?
• What will be done before the next meeting?
• What obstacles are in the way?

Max 15 mins

Max 8 hours

Max 4 hours
Show the customer and other
stakeholders the work that the team
accomplished in the sprint and
receive feedback

Identify and implement ideas for
process improvement

Determine what to do

Max 3 hours

Scrum Terminology
Scrum term Definition

Development team A self-organizing group of software developers responsible for developing the software and other essential project
documents.

Potentially shippable product
increment

The software increment that is delivered from a sprint. The idea is that this should be ‘potentially shippable’ which
means that it is in a finished state and no further work, such as testing, is needed to incorporate it into the final product.
In practice, this is not always achievable.

Product backlog
This is a list of ‘to do’ items which the Scrum team must tackle. They may be feature definitions for the software,
software requirements, user stories or descriptions of supplementary tasks that are needed, such as architecture
definition or user documentation.

Product owner

An individual (or possibly a small group) whose job is to identify product features or requirements, prioritize these for
development and continuously review the product backlog to ensure that the project continues to meet critical business
needs. The Product Owner can be a customer but might also be a product manager in a software company or other
stakeholder representative.

Scrum A daily meeting of the Scrum team that reviews progress and prioritizes work to be done that day. Ideally, this should be
a short face-to-face meeting that includes the whole team.

ScrumMaster

The ScrumMaster is responsible for ensuring that the Scrum process is followed and guides the team in the effective use
of Scrum. He or she is responsible for interfacing with the rest of the company and for ensuring that the Scrum team is
not diverted by outside interference. The Scrum developers are adamant that the ScrumMaster should not be thought of
as a project manager. Others, however, may not always find it easy to see the difference.

Sprint A development iteration. Sprints are usually 2-4 weeks long.

Velocity
An estimate of how much product backlog effort that a team can cover in a single sprint. Understanding a team’s
velocity helps them estimate what can be covered in a sprint and provides a basis for measuring improving performance.

The Scrum Sprint Cycle

• Sprints are fixed length, normally 2–4 weeks.

• The starting point for planning is the product backlog, which is the list
of work to be done on the project.

• The selection phase involves all of the project team who work with
the customer to select the features and functionality from the
product backlog to be developed during the sprint.

Review work
to be done

Select
items

Plan
sprint

Review
sprintSprint

Scrum

Product
backlog

Sprint
backlog

Potentially
shippable
software

The Sprint Cycle

• Once these are agreed, the team organize themselves to develop the
software.

• During this stage the team is isolated from the customer and the
organization, with all communications channelled through the so-
called ‘Scrum master’.

• The role of the Scrum master is to protect the development team
from external distractions.

• At the end of the sprint, the work done is reviewed and presented to
stakeholders. The next sprint cycle then begins.

Teamwork in Scrum

• The ‘Scrum master’ is a facilitator who arranges daily meetings, tracks
the backlog of work to be done, records decisions, measures progress
against the backlog and communicates with customers and
management outside of the team.

• The whole team attends short daily meetings (Scrums) where all team
members share information, describe their progress since the last
meeting, problems that have arisen and what is planned for the
following day.
• This means that everyone on the team knows what is going on and, if

problems arise, can re-plan short-term work to cope with them.

Scrum Benefits

• The product is broken down into a set of manageable and
understandable chunks.

• Unstable requirements do not hold up progress.

• The whole team have visibility of everything and consequently team
communication is improved.

• Customers see on-time delivery of increments and gain feedback on
how the product works.

• Trust between customers and developers is established and a positive
culture is created in which everyone expects the project to succeed.

Distributed Scrum

Videoconferencing
between the product
owner and the
development team

Distributed Scrum

The ScrumMaster
should be located with
the development team
so that he or she is
aware of everyday
problems.

The product owner
should visit the
developers and try to
establish a good
relationship with them.
It is essential that they
trust each other.

Real-time communica-
tions between team
members for informal
communication,
particularly instant
messaging and video
calls.

Continuous integration,
so that all team
members can be aware
of the state of the
product at any time.

A common development
environment for all teams

Scrum, as originally designed, was intended
for use with co-located teams where all team
members could get together every day in
stand-up meetings. However, much software
development now involves distributed teams,
with team members located in different
places around the world.

Scaling Agile Methods

• Agile methods have proved to be successful for small and medium
sized projects that can be developed by a small co-located team.

• It is sometimes argued that the success of these methods comes
because of improved communications which is possible when
everyone is working together.

• Scaling up agile methods involves changing these to cope with larger,
longer projects where there are multiple development teams,
perhaps working in different locations.

Scaling Out and Scaling Up

• ‘Scaling up’ is concerned with using agile methods for developing
large software systems that cannot be developed by a small team.

• ‘Scaling out’ is concerned with how agile methods can be introduced
across a large organization with many years of software
development experience.

• When scaling agile methods it is important to maintain agile
fundamentals:
• Flexible planning, frequent system releases, continuous integration, test-

driven development and good team communications.

Practical Problems with Agile Methods

• The informality of agile development is incompatible with the legal
approach to contract definition that is commonly used in large
companies.

• Agile methods are most appropriate for new software development
rather than software maintenance. Yet the majority of software costs
in large companies come from maintaining their existing software
systems.

• Agile methods are designed for small co-located teams yet much
software development now involves worldwide distributed teams.

Contractual Issues

• Most software contracts for custom systems are based around a
specification, which sets out what has to be implemented by the
system developer for the system customer.

• However, this precludes interleaving specification and development
as is the norm in agile development.

• A contract that pays for developer time rather than functionality is
required.
• However, this is seen as a high risk in many legal departments because what

has to be delivered cannot be guaranteed.

Agile Methods and Software Maintenance

• Key problems are:
• Lack of product documentation
• Keeping customers involved in the development process
• Maintaining the continuity of the development team

• Agile development relies on the development team knowing and
understanding what has to be done.

• For long-lifetime systems, this is a real problem as the original
developers will not always work on the system.

Agile and Plan-Driven Methods

• Most projects include elements of plan-driven and agile processes.
Deciding on the balance depends on:
• Is it important to have a very detailed specification and design before moving

to implementation? If so, you probably need to use a plan-driven approach.
• Is an incremental delivery strategy, where you deliver the software to

customers and get rapid feedback from them, realistic? If so, consider using
agile methods.
• How large is the system that is being developed? Agile methods are most

effective when the system can be developed with a small co-located team
who can communicate informally. This may not be possible for large systems
that require larger development teams so a plan-driven approach may have
to be used.

Key Points

• Agile methods are incremental development methods that focus on rapid
software development, frequent releases of the software, reducing process
overheads by minimizing documentation and producing high-quality code.
• Agile development practices include:

• User stories for system specification
• Frequent releases of the software,
• Continuous software improvement
• Test-first development
• Customer participation in the development team.

• Scrum is an agile method that provides a project management framework.
• It is centered round a set of sprints, which are fixed time periods when a system

increment is developed.

Key Points

• Many practical development methods are a mixture of plan-based
and agile development.

• Scaling agile methods for large systems is difficult.
• Large systems need up-front design and some documentation and

organizational practice may conflict with the informality of agile approaches.

Requirements Engineering

Topics Covered

• Functional and non-functional requirements

• Requirements engineering processes

• Requirements elicitation

• Requirements specification

• Requirements validation

• Requirements change

Requirements Engineering

• The process of establishing the services that a customer requires from
a system and the constraints under which it operates and is
developed.
• The system requirements are the descriptions of the system services

and constraints that are generated during the requirements
engineering process.

What is a Requirement?

• It may range from a high-level abstract statement of a service or of a
system constraint to a detailed mathematical functional
specification.

• This is inevitable as requirements may serve a dual function:
• May be the basis for a bid for a contract - therefore must be open to

interpretation;
• May be the basis for the contract itself - therefore must be defined in detail;
• Both these statements may be called requirements.

• User requirements
Statements in natural language plus
diagrams of the services the system
provides and its operational
constraints. Written for customers.

• System requirements
A structured document setting out
detailed descriptions of the system’s
functions, services and operational
constraints. Defines what should be
implemented so may be part of a
contract between client and
contractor.

Types of Requirement

 The Mentcare system shall generate monthly management reports
showing the cost of drugs prescribed by each clinic during that month.

1.1 On the last working day of each month, a summary of the drugs
prescribed, their cost and the prescribing clinics shall be generated.
1.2 The system shall generate the report for printing after 17.30 on the
last working day of the month.
1.3 A report shall be created for each clinic and shall list the individual
drug names, the total number of prescriptions, the number of doses
prescribed and the total cost of the prescribed drugs.
1.4 If drugs are available in different dose units (e.g. 10mg, 20mg, etc)
separate reports shall be created for each dose unit.
1.5 Access to drug cost reports shall be restricted to authorized users as
listed on a management access control list.

1.

User requirements definition

System requirements specification

Readers of Different Types of Requirements
Specification

Client managers
System end-users
Client engineers
Contractor managers
System architects

System end-users
Client engineers
System architects
Software developers

User
requirements

System
requirements

System Stakeholders

• Any person or organization who is affected by the system in some way
and so who has a legitimate interest
• Stakeholder types:
• End users
• System managers
• System owners
• External stakeholders

Stakeholders in the Mentcare System

• Patients whose information is recorded in the system.
• Doctors who are responsible for assessing and treating patients.
• Nurses who coordinate the consultations with doctors and administer some

treatments.
• Medical receptionists who manage patients’ appointments.
• IT staff who are responsible for installing and maintaining the system.
• A medical ethics manager who must ensure that the system meets current ethical

guidelines for patient care.
• Health care managers who obtain management information from the system.
• Medical records staff who are responsible for ensuring that system information

can be maintained and preserved, and that record keeping procedures have been
properly implemented.

Agile Methods and Requirements

• Many agile methods argue that producing detailed system
requirements is a waste of time as requirements change so quickly.

• The requirements document is therefore always out of date.

• Agile methods usually use incremental requirements engineering and
may express requirements as ‘user stories’.

• This is practical for business systems but problematic for systems that
require pre-delivery analysis (e.g. critical systems) or systems
developed by several teams.

Functional and Non-functional Requirements

Functional and Non-functional Requirements

• Functional requirements
• Statements of services the system should provide, how the system should react to particular

inputs and how the system should behave in particular situations.
• May state what the system should not do.

• Non-functional requirements
• Constraints on the services or functions offered by the system such as timing constraints,

constraints on the development process, standards, etc.
• Often apply to the system as a whole rather than individual features or

services.
• Domain requirements

• Constraints on the system from the domain of operation

Functional Requirements

• Describe functionality or system services.

• Depend on the type of software, expected users and the type of
system where the software is used.

• Functional user requirements may be high-level statements of what
the system should do.

• Functional system requirements should describe the system services
in detail.

Mentcare System: Functional Requirements

• A user shall be able to search the appointments lists for all clinics.

• The system shall generate each day, for each clinic, a list of patients
who are expected to attend appointments that day.

• Each staff member using the system shall be uniquely identified by his
or her 8-digit employee number.

Requirements Imprecision

• Problems arise when functional requirements are not precisely stated.

• Ambiguous requirements may be interpreted in different ways by
developers and users.

• Consider the term ‘search’ in requirement 1
• User intention – search for a patient name across all appointments in all

clinics;
• Developer interpretation – search for a patient name in an individual clinic.

User chooses clinic then search.

Requirements Completeness and Consistency

• In principle, requirements should be both complete and consistent.
• Complete
• They should include descriptions of all facilities required.

• Consistent
• There should be no conflicts or contradictions in the descriptions of the

system facilities.
• In practice, because of system and environmental complexity, it is impossible to

produce a complete and consistent requirements document.

Non-functional Requirements

• These define system properties and constraints e.g. reliability,
response time and storage requirements. Constraints are I/O device
capability, system representations, etc.

• Process requirements may also be specified mandating a particular
IDE, programming language or development method.

• Non-functional requirements may be more critical than functional
requirements. If these are not met, the system may be useless.

Types of Non-functional Requirement

Performance
requirements

Space
requirements

Usability
requirements

Efficiency
requirements

Dependability
requirements

Security
requirements

Regulatory
requirements

Ethical
requirements

Legislative
requirements

Operational
requirements

Development
requirements

Environmental
requirements

Safety/security
requirements

Accounting
requirements

Product
requirements

Organizational
requirements

External
requirements

Non-functional
requirements

Non-functional Requirements
Implementation
• Non-functional requirements may affect the overall architecture of a

system rather than the individual components.
• For example, to ensure that performance requirements are met, you may

have to organize the system to minimize communications between
components.

• A single non-functional requirement, such as a security requirement,
may generate a number of related functional requirements that
define system services that are required.
• It may also generate requirements that restrict existing requirements.

Non-functional Classifications

• Product requirements
• Requirements which specify that the delivered product must behave in a particular way e.g.

execution speed, reliability, etc.

• Organisational requirements
• Requirements which are a consequence of organisational policies and procedures e.g.

process standards used, implementation requirements, etc.

• External requirements
• Requirements which arise from factors which are external to the system and its development

process e.g. interoperability requirements, legislative requirements, etc.

Examples of Non-functional Requirements in
the Mentcare System

Product requirement
The Mentcare system shall be available to all clinics during normal
working hours (Mon–Fri, 0830–17.30). Downtime within normal
working hours shall not exceed five seconds in any one day.

Organizational requirement
Users of the Mentcare system shall authenticate themselves using
their health authority identity card.

External requirement
The system shall implement patient privacy provisions as set out in
HStan-03-2006-priv.

Goals and Requirements

• Non-functional requirements may be very difficult to state precisely and
imprecise requirements may be difficult to verify.
• Goal: A general intention of the user such as ease of use.
• Verifiable non-functional requirement

• A statement using some measure that can be objectively tested.

• Goals are helpful to developers as they convey the intentions of the system users.

Usability Requirements

• The system should be easy to use by medical staff and should be
organized in such a way that user errors are minimized. (Goal)

• Medical staff shall be able to use all the system functions after four
hours of training. After this training, the average number of errors
made by experienced users shall not exceed two per hour of system
use. (Testable non-functional requirement)

Metrics for Specifying Non-functional
Requirements

Property Measure

Speed
Processed transactions/second
User/event response time
Screen refresh time

Size Mbytes
Number of ROM chips

Ease of use Training time
Number of help frames

Reliability

Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness
Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

Requirements Engineering Processes

Requirements Engineering Processes

• The processes used for RE vary widely depending on the application
domain, the people involved and the organization developing the
requirements.

• However, there are a number of generic activities common to all
processes:
• Requirements elicitation;
• Requirements analysis;
• Requirements validation;
• Requirements management.

• In practice, RE is an iterative activity in which these processes are
interleaved.

Spiral View of Requirements Engineering
Process Requirements

specification

Requirements
validation

Requirements
elicitation

System requirements
specification and

modeling

System
req.

elicitation

User requirements
specification

User
requirements

elicitation

Business requirements
specification

Prototyping

Feasibility
study

Reviews

System requirements
document

Start

Requirements Elicitation

Requirements Elicitation and Analysis

• Sometimes called requirements elicitation
or requirements discovery.
• Involves technical staff working with

customers to find out about the application
domain, the services that the system should
provide and the system’s operational
constraints.
• May involve end-users, managers, engineers

involved in maintenance, domain experts,
trade unions, etc. These are called
stakeholders.

1. Requirements
discovery

2. Requirements
classification and

organization

3. Requirements
prioritization and

negotiation

4. Requirements
specification

Process Activities

• Requirements discovery
• Interacting with stakeholders to discover their requirements. Domain requirements are also

discovered at this stage. (Interviewing and Ethnography)

• Requirements classification and organisation
• Groups related requirements and organises them into coherent clusters.

• Prioritisation and negotiation
• Prioritising requirements and resolving requirements conflicts.

• Requirements specification
• Requirements are documented and input into the next round of the spiral.

• Stakeholders don’t know what they really want.
• Stakeholders express requirements in their own terms.
• Different stakeholders may have conflicting requirements.
• Organisational and political factors may influence the system requirements.
• The requirements change during the analysis process. New stakeholders may

emerge and the business environment may change.

Problems of Requirements Elicitation

Requirements Specification

Requirements Specification

• The process of writing down the user and system requirements in a
requirements document.
• User requirements have to be understandable by end-users and

customers who do not have a technical background.

• System requirements are more detailed requirements and may
include more technical information.

• The requirements may be part of a contract for the system
development
• It is therefore important that these are as complete as possible.

Writing System Requirements Specification
Notation Description

Natural language The requirements are written using numbered sentences in natural language. Each
sentence should express one requirement.

Structured natural language The requirements are written in natural language on a standard form or template. Each
field provides information about an aspect of the requirement.

Design description languages
This approach uses a language like a programming language, but with more abstract
features to specify the requirements by defining an operational model of the system. This
approach is now rarely used although it can be useful for interface specifications.

Graphical notations Graphical models, supplemented by text annotations, are used to define the functional
requirements for the system; UML use case and sequence diagrams are commonly used.

Mathematical specifications

These notations are based on mathematical concepts such as finite-state machines or sets.
Although these unambiguous specifications can reduce the ambiguity in a requirements
document, most customers don’t understand a formal specification. They cannot check
that it represents what they want and are reluctant to accept it as a system contract

Problems with Natural Language

• Lack of clarity
• Precision is difficult without making the document difficult to read.

• Requirements confusion
• Functional and non-functional requirements tend to be mixed-up.

• Requirements amalgamation
• Several different requirements may be expressed together.

Example Requirements for the Insulin Pump
Software System

3.2 The system shall measure the blood sugar and deliver
insulin, if required, every 10 minutes. (Changes in blood sugar
are relatively slow so more frequent measurement is
unnecessary; less frequent measurement could lead to
unnecessarily high sugar levels.)

3.6 The system shall run a self-test routine every minute with
the conditions to be tested and the associated actions defined
in Table 1. (A self-test routine can discover hardware and
software problems and alert the user to the fact the normal
operation may be impossible.)

Structured Specification of a Requirement for
an Insulin Pump

Tabular Specification of Computation for an
Insulin Pump

Condition Action

Sugar level falling (r2 < r1) CompDose = 0

Sugar level stable (r2 = r1) CompDose = 0

Sugar level increasing and rate of
increase decreasing
((r2 – r1) < (r1 – r0))

CompDose = 0

Sugar level increasing and rate of
increase stable or increasing
((r2 – r1) ≥ (r1 – r0))

CompDose =
round ((r2 – r1)/4)

If rounded result = 0 then
CompDose =
MinimumDose

Use Cases

• Use-cases are a kind of scenario that are included in the UML.

• Use cases identify the actors in an interaction and which describe the
interaction itself.

• A set of use cases should describe all possible interactions with the
system.

• High-level graphical model supplemented by more detailed tabular
description.

• UML sequence diagrams may be used to add detail to use-cases by
showing the sequence of event processing in the system.

Use Cases for the Mentcare System

Nurse

Medical receptionist
Manager

Register
patient

View
personal info.

View record

Generate
report

Export
statistics

Doctor
Edit record

Setup
consultation

The Software Requirements Document

• The software requirements document is the official statement of
what is required of the system developers.

• Should include both a definition of user requirements and a
specification of the system requirements.

• It is NOT a design document. As far as possible, it should set of WHAT
the system should do rather than HOW it should do it.

Users of a Requirements Document

Use the requirements to
develop validation tests for
the system.

Use the requirements
document to plan a bid for
the system and to plan the
system development process.

Use the requirements to
understand what system is
to be developed.

System test
engineers

Managers

System
engineers

Specify the requirements and
read them to check that they
meet their needs. Customers
specify changes to the
requirements.

System
customers

Use the requirements to
understand the system and
the relationships between its
parts.

System
maintenance

engineers

Requirements Document Variability

• Information in requirements document depends on type of system
and the approach to development used.

• Systems developed incrementally will, typically, have less detail in the
requirements document.

• Requirements documents standards have been designed e.g. IEEE
standard. These are mostly applicable to the requirements for large
systems engineering projects.

Chapter Description
Preface This should define the expected readership of the document and describe its

version history, including a rationale for the creation of a new version and a
summary of the changes made in each version.

Introduction This should describe the need for the system. It should briefly describe the
system’s functions and explain how it will work with other systems. It should also
describe how the system fits into the overall business or strategic objectives of
the organization commissioning the software.

Glossary This should define the technical terms used in the document. You should not
make assumptions about the experience or expertise of the reader.

User requirements
definition

Here, you describe the services provided for the user. The nonfunctional system
requirements should also be described in this section. This description may use
natural language, diagrams, or other notations that are understandable to
customers. Product and process standards that must be followed should be
specified.

System architecture This chapter should present a high-level overview of the anticipated system
architecture, showing the distribution of functions across system modules.
Architectural components that are reused should be highlighted.

Structure of a Requirements Document

Structure of a Requirements Document
Chapter Description
System requirements
specification

This should describe the functional and nonfunctional requirements in more detail. If
necessary, further detail may also be added to the nonfunctional requirements.
Interfaces to other systems may be defined.

System models This might include graphical system models showing the relationships between the
system components and the system and its environment. Examples of possible models
are object models, data-flow models, or semantic data models.

System evolution This should describe the fundamental assumptions on which the system is based, and
any anticipated changes due to hardware evolution, changing user needs, and so on. This
section is useful for system designers as it may help them avoid design decisions that
would constrain likely future changes to the system.

Appendices These should provide detailed, specific information that is related to the application
being developed; for example, hardware and database descriptions. Hardware
requirements define the minimal and optimal configurations for the system. Database
requirements define the logical organization of the data used by the system and the
relationships between data.

Index Several indexes to the document may be included. As well as a normal alphabetic index,
there may be an index of diagrams, an index of functions, and so on.

Requirements Validation

Requirements Validation

• Concerned with demonstrating that the requirements define the
system that the customer really wants.
• Requirements error costs are high so validation is very important

• Fixing a requirements error after delivery may cost up to 100 times the cost of
fixing an implementation error.

Requirements Checking

• Validity. Does the system provide the functions which best support the
customer’s needs?
• Consistency. Are there any requirements conflicts?
• Completeness. Are all functions required by the customer included?
• Realism. Can the requirements be implemented given available budget and

technology
• Verifiability. Can the requirements be checked?

• Requirements reviews: Systematic manual analysis of the
requirements.
• Verifiability: Is the requirement realistically testable?
• Comprehensibility: Is the requirement properly understood?
• Traceability: Is the origin of the requirement clearly stated?
• Adaptability: Can the requirement be changed without a large impact on

other requirements?
• Prototyping
• Using an executable model of the system to check requirements.

• Test-case generation
• Developing tests for requirements to check testability.

Requirements Validation Techniques

Requirements Change

Changing Requirements

• The business and technical environment of the system always
changes after installation.
• New hardware may be introduced, it may be necessary to interface the

system with other systems, business priorities may change (with consequent
changes in the system support required), and new legislation and regulations
may be introduced that the system must necessarily abide by.

• The people who pay for a system and the users of that system are
rarely the same people.
• System customers impose requirements because of organizational and

budgetary constraints. These may conflict with end-user requirements and,
after delivery, new features may have to be added for user support if the
system is to meet its goals.

Changing Requirements

• Large systems usually have a diverse user community, with many
users having different requirements and priorities that may be
conflicting or contradictory.
• The final system requirements are inevitably a compromise between them

and, with experience, it is often discovered that the balance of support given
to different users has to be changed.

Requirements Evolution

Time

Changed
understanding

of problem

Initial
understanding

of problem

Changed
requirements

Initial
requirements

Requirements Management

• Requirements management is the process of managing changing
requirements during the requirements engineering process and
system development.
• New requirements emerge as a system is being developed and after it

has gone into use.

• You need to keep track of individual requirements and maintain links
between dependent requirements so that you can assess the impact
of requirements changes.

• You need to establish a formal process for making change proposals
and linking these to system requirements.

Requirements Management Planning

• Establishes the level of requirements management detail that is
required.

• Requirements management decisions:
• Requirements identification Each requirement must be uniquely identified so

that it can be cross-referenced with other requirements.
• A change management process This is the set of activities that assess the

impact and cost of changes.
• Traceability policies These policies define the relationships between each

requirement and between the requirements and the system design that
should be recorded.
• Tool support Tools that may be used range from specialist requirements

management systems to spreadsheets and simple database systems.

Requirements Change Management

• Deciding if a requirements change should be accepted
• Problem analysis and change specification

• During this stage, the problem or the change proposal is analyzed to check that it is valid.
This analysis is fed back to the change requestor who may respond with a more specific
requirements change proposal, or decide to withdraw the request.

• Change analysis and costing
• The effect of the proposed change is assessed using traceability information and general

knowledge of the system requirements. Once this analysis is completed, a decision is
made whether or not to proceed with the requirements change.

• Change implementation
• The requirements document and, where necessary, the system design and

implementation, are modified. Ideally, the document should be organized so that
changes can be easily implemented.

Requirements Change Management

Change
implementation

Change analysis
and costing

Problem analysis and
change specification

Identified
problem

Revised
requirements

Key Points

• Requirements for a software system set out what the system should do and
define constraints on its operation and implementation.
• Functional requirements are statements of the services that the system

must provide or are descriptions of how some computations must be
carried out.
• Non-functional requirements often constrain the system being developed

and the development process being used.
• They often relate to the emergent properties of the system and therefore

apply to the system as a whole.
• The requirements engineering process is an iterative process that includes

requirements elicitation, specification and validation.

Key Points

• Requirements elicitation is an iterative process that can be represented as
a spiral of activities – requirements discovery, requirements classification
and organization, requirements negotiation and requirements
documentation.
• You can use a range of techniques for requirements elicitation including

interviews and ethnography. User stories and scenarios may be used to
facilitate discussions.
• Requirements specification is the process of formally documenting the user

and system requirements and creating a software requirements document.
• The software requirements document is an agreed statement of the system

requirements. It should be organized so that both system customers and
software developers can use it.

Key Points

• Requirements validation is the process of checking the requirements
for validity, consistency, completeness, realism and verifiability.

• Business, organizational and technical changes inevitably lead to
changes to the requirements for a software system. Requirements
management is the process of managing and controlling these
changes.

