SWEN 6301 Software Construction
Module 5: Software Construction

Ahmed Tamrawi

Copyright notice: 1- care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.
2- many slides are adopted with permission from lan Sommerville and Mustafa Misir ‘s lecture notes on Software Engineering course and Modern Software Development Technology course.

Be the first to CRACK this code to claim a bonus!

https://gist.github.com/atamrawi/be5f2c23641f
00c2cbad1f0b6cbe7162

https://gist.github.com/atamrawi/be5f2c23641f00c2cba41f0b6c6e7f62

Software Construction

SWEN 6301 Software
Construction Definition

Software construction is the process of creating and
evolving software source code that results on extensible,
maintainable, robust, and secure software

What Is Software Construction?

Construction Activities

[- -
z lk'l.\ll(‘d/ r—
5 Hna (Design [s /
e d " J —

P

(.()(lil‘g il[l(lﬁnlr"dt'h/
L onstraction . ——
| Planning /’ Debuggin g:,)

—

o

N
:rugruu'n/
PR ’, I | Testing
- d tan J) e
= ¥ - : r’
- ') | Testing . -
— bl _,J M r P
= G2

Coding implies the mechanical translation of a
preexisting design into a computer language;
construction is not at all mechanical and
involves substantial creativity and judgment.

Construction focuses on coding and debugging but also includes
detailed design, unit testing, integration testing, and other activities.

/ e ——
—J /‘ -
l)vltulul/ —
—— [Dee f o)
Design)
/ / : —

f I

Coding and Jiiegraiion

g
construction)
‘ A \ \ /

| Planning

Debugging

— — / \fv\ _—
™ E
Integration)
~— T —— J lesting)
y, ‘ Unit Y, s
) | Testing (T —
——

High-level View of Construction Activities

Verifying that the groundwork has been laid so that
construction can proceed successfully

Determining how your code will be tested
Designing and writing classes and routines
Creating and naming variables and named constants

Selecting control structures and organizing blocks of
statements

Unit testing, integration testing, and debugging your
own code

Reviewing other team members’ low-level designs and
code and having them review yours

Polishing code by carefully formatting and commenting
it

Integrating software components that were created
separately

Tuning code to make it faster and use fewer resources

Specific Tasks of Construction Activities

Why is Software Construction Important?

)
Construction is a large ®
part of software Construction’s product, the source
development code, is often the only accurate
¢ description of the software
Construction is the central
activity in software development >

Construction is the only activity
that’s guaranteed to be done

O
With a focus on construction, the

individual programmer’s productivity
can improve enormously

SUMMAR

Software construction is the central activity in software
development; construction is the only activity that’s guaranteed to
happen on every project.

~
-

The main activities in construction are detailed design, coding,
debugging, integration, and developer testing (unit testing and
integration testing).

Other common terms for construction are “coding” and
“programming.”

The quality of the construction substantially affects the quality of
the software.

Your understanding of how to do construction determines how
good a programmer you are.

Construction

Software is usually designed and created (coded/written/programmed) in integrated development
environments (IDE) like Eclipse, Xcode or Microsoft Visual Studio that can simplify the process and
compile the program to an executable unit.

Future Improvements

Deployment

Testing

Construction

Architecture

Requirements

Problem Definition

Key Construction Decisions

Choice of Programming Prosrammine Conventions Your Location on the Selection of Major
Language 8 8 Technology Wave Construction Practices

Choice of Programming Language

Studies have shown that the programming-
language choice affects productivity and code
quality in several ways

Programmers are more productive using a
familiar language than an unfamiliar one

Programmers working with high-level languages
achieve better productivity and quality than
those working with lower-level languages.

Human languages

High level
programming
language

Low level
programming

language

Machine language

E.g., English, French, Spanish,

Chinese, German, Arabic etc.

~ E.g., Python, Java, C++

for(1=1:1<=10; 1++)

Assembly

MOV #10, RO

Binary

10100000 1010 00

Computer hardware

High
level

Low
level

Choice of Programming Language

Ratio of High-Level-Language Statements to Equivalent C Code

Language Level Relative to C
C 1

C++ 2.5

Fortran 95 2

Java 2.5

Perl 6

Python 6

Smalltalk 6

Microsoft Visual Basic 4.5

Source: Adapted from Estimating Software Costs (Jones 1998), Software Cost Estimation with Cocomo Il
(Boehm 2000), and “An Empirical Comparison of Seven Programming Languages” (Prechelt 2000).

Job postings containing top languages

NovessDec T 20

@ 20 oos
2017 jotn

Choice of Programming Language

Kind of Program Best Languages Worst Languages
Command-line Cobol, Fortran, SQL -

processing

Cross-platform Java, Perl, Python Assembler, C#, Visual Basic
development

Database manipulation

SQL., Visual Basic

Assembler, C

Direct memory Assembler, C, C++ C#, Java, Visual Basic
manipulation

Distributed system C#, Java

Dynamic memory use C, Cs+, Java -

Easy-to-maintain
program

C++, Java, Visual Basic

Assembler, Perl

Fast execution

Assembler, C, Cas,

JavaScript, Perl, Python

NOVICE PROGRAMMER

Visual Basic
For environments with Assembler, C C#, Java, Visual Basic
limited memory
Mathematical Fortran Assembler
calculation
Quick-and-dirty project | Perl. PHP, Python. Assembler
Visual Basic
Real-time program C, C++, Assembler C#, Java, Python, Perl, Visual

Basic

Report writing Cobol, Perl, Visual Assembler, Java
Basic

Secure program C#, Java C,C++

String manipulation Perl, Python C

Web development C#. Java, JavaScript, Assembler, C

PHP, Visual Basic

Some languages simply don't support certain kinds of programs, and those have not

been listed as “worst” lanenaees, For examvle. Perl is not listed as a “worst
langnage " for mathematical calculations.

el e ba? 4 Re Br s syt bmgee el o e | MM e et ety B b P blema b -t ¢ ey @ Ra (e LY
o er D e T L R e I L T LR merry B 2 bisem Sew b St 874 2 1eme e e et St by @ty eea—

P e Bees A eted e fhm b e Ame A e b evesa e) b4 et e SNargy N Tme s L6l e Ty ake B, e ey PoR————

b e ey e pe g s B e e S eprecemEn sy
l n i el L I A At suanamn s B Shaped Satery & B bem Baset sapama They | prevdie e pe—

et o @ e b i Pa g ¥ L meee bMane e 4 ey P e o e e e e b Mee s b g L aia ad M e s b e R e bed [N —)

P bt = 000 b s 900 Pt = Peee tew 'y Mgt g S e e et S Be 00 e ehee S v 8 gt o e gt e e . - e e w—— g
Tracing the roots of computer S eget Amanyg Me es b gt 8V has AP 8 Te prsssses oL ke - il i e I N R IR S e———

18e = Saslen et bmie - e Rede | S eee e feay e B tes Beiseie o

languages through the ages

WO TR T TR TR TR T TR TR TR TR TR T TR TR TR T R T TR T TR T TR T TR TR TR TR TR TR TR T TR TR TR T TR TR TR TR O "R O T O O"R ORI O

Appeans b o i b e by Pa g Yy A e

B R T It el e i S

B et T

P oy g enme Bt et P oy e e

B R i I e T T
) TS w1000 v mmbar v by W et e
Bt 8 et b Py - s o

B e fe Bhwn bee tegm pee - P e 2 § ey - - w0 O D Fener b e b g O S - S M - - . e

Programming Conventions

In high-quality software, you can see a relationship between the conceptual integrity
of the architecture and its low-level implementation.

That’s the point of construction guidelines for variable names, class names, routine names, formatting conventions, and
commenting conventions.

Without a unifying discipline, your creation will
be a jumble of sloppy variations in style. Such checksty e 2Clipse~CS
variations tax your brain—and only for the PSR

))) http://checkstyle.sourceforge.net/ http://checkstyle.org/eclipse-cs/
sake of understanding coding-style differences
that are essentially arbitrary.

Before construction begins, spell out the programming conventions you’ll use. Coding convention details
are at such a level of precision that they’re nearly impossible to retrofit into software after it’s written.

Programming into a Language

Programmers who program “in” a language limit their Programmers who program “into” a language first
thoughts to constructs that the language directly decide what thoughts they want to express, and then
supports. If the language tools are primitive, the they determine how to express those thoughts using

programmer’s thoughts will also be primitive. the tools provided by their specific language.

Selection of Major Construction Practices

Checklist: Major Construction Practices
Coding

B

2
4

Have you defined bow much design will be doae up front xnd bow much
willl be done at the keyboard, while the code is being writlen?

Have you defimed codimg conventons lor names, comments, and layout?

Have you defined specific coding practices that are implted by the archatec
sure, such as how error conditions will be hasdied, how security will be

addressed, whan comventions will be used for class interfaces, what stan
dards will apply to reused code, how mvach to considier performance while
codng, and so on?

Have you idenafied your location on the technology wave and adjussed
your approach to masch? Il necossary, have you identified how you will
program it the language rather than being limsed by programming te u?

Tearmwork

-

el

Have you defimed an micgration procedure—that 18, have you defined the
spocific seps 2 programener must go theough before checking code into
the master sources?

Will programmers program in patrs, or individually, or some combinaton
of the two?

Quality Assurance

(I =

O Wil programmers write test cases for their code before wrining the code
itscli?

Wl programmers write unit tests for thewr code regardless of whether

they write them first or Last?

Will programmers step through thewr code in the debugger before they

check & in?
Will programmers integrationtest ther code before they check it in?
Will progremmers review of inspect each other’s code?

Tools

€ © C

. <

Have you selecred a revision control wool?

Have you selecved 2 linguage snd beguage wersson or compiler verson?
Have you selecsed 2 framework such as J2EE or Microsolt NET or explic-
itly decided not 10 wee a Framework?

Have you deoded whether 10 allow we of notstandard linguage leatures?

HMave you identified and acquised other 100ls you'll be using-editor, refac.
toring wol, debugper, test framewoek, symtax checker, and so oa?

SUMMAR

Every programming language has strengths and weaknesses. Be aware of
the specific strengths and weaknesses of the language you’re using.

Establish programming conventions before you begin programming. It’s
nearly impossible to change code to match them later.

More construction practices exist than you can use on any single project.
Consciously choose the practices that are best suited to your project.

Ask yourself whether the programming practices you’re using are a
response to the programming language you’re using or controlled by it.
Remember to program into the language, rather than programming in it.

Your position on the technology wave determines what approaches will be
effective— or even possible. Identify where you are on the technology
wave, and adjust your plans and expectations accordingly

a very complicated task

Creating High-Quality Code

Design in Construction Working Classes High Quality Routines Defensive Programming

Design in Construction

Software Design

The conception, invention, or contrivance of a scheme for turning a specification for computer software into
operational software. Its the activity that links requirements to coding and debugging

[FIRST OF ALL. | 0Ny

[IAL NEED TO KNOW WHAT ARE |
iR o) | Riacs | | | e, | | s
- A ACCOMM 15H WITTH
| | ACCOMRLISW - = | THE SOFTWIARE?

N

| DESIGN THE SOFTWARL |

I\

A good top-level design
provides a structure that can

B mat MOOTUADASL & A, L0

8 WONT KO LMAT | TRY TO GET THIS) - \ safely contain multiple
| 3 CAN ACCOMPLISH CONCLPFT THRAOUGH YOLR, CAN YOU DESIGN

it s soetumke || || soFTuwmar can oo 1Y REQUIRENENTS? lower-level designs
AT e WAL] | JNATEVER 3 DEBIGN . g

IT 70 OO

Design Challenges: Design is a Wicked Problem

WICKED PROBLEMS = =) 7
Enter a word, e.g. 'pie’ Q %‘% "\" — (CO%‘
#N Dl [»/mb'u (e vbefab’ P o ot
wicked 0wt be o7 WEHOEE g lke S, ' 2.8~ Ja e Pk o exitndel
'wikzd/ © DJJ'"JS’ ‘:_\ 'Wd&"f‘z 2 ‘c&"{’ : -)S\J-U‘ 'w%‘
w1 ,m:\- ;-‘,‘) mem_»_, whignom = fnphm\
adjective NTATIVE | 6= ' \nCS I h5P‘L‘~£{2’E
1. evil or morally wrong. _Jﬂ'[- & m\” uw‘cb)) lﬂ \
"a wicked and |uns(:f:"ul;;>ulous p(l)litician' ! e ek WC’(FP’;#‘ M‘ wa,ons
synonyms: evil, sinful, immoral, ng, morally wrong, ngful, , iniquif .) - " ™
e eh:anse‘d.ungoqgayn:;?y,gineligiou);. u_nrigh:or:us?fusacmegiou?m?a::wm * \ I mfﬁ ’L{LM' Y /?« / L\ Ckcdg | o WKEED TEoRLeM 5
blasphemous, impious, base, mean, vile; More ahuu' Il'l Q{ e, _,/ u‘e';: ':; . %‘ﬁ @ { (fd czam
e | o) . Wi/ e egle”
synonyms: mischievous, playful, naughty, impish, roguish, arch, rascally, rakish, puckish, et - —3 U > YT o !v-\:' - . ' ACked rn“' { - ., =/ fite & 0’1' €.
waggish, devilish, tricksy, cheeky, raffish, teasing whey atl SAHE ™ fetuires ‘_\ 1\ ¥ LEADERSHIP i< keY
"a wicked sense of humour” n comsfrant IX do ll-h’.,” . é!‘;:é‘;wy\ >(‘w w d ip CACOVEALINC, LRENVIT
3. A wicked problem is a problem that could be clearly defined only by solving it, he fnow s ,).. h o ' AT —— !
or by solving part of it. \ EFFILIENC = Iy) BOY ey < . ;,:‘S . ?i?; < * Sf:. ;’m @“
Horst Rittel and Melvin Webber 1973 ‘)
£ 1 The paradox implies that you have to solve the problem
™ TON
aU ED BUTTON) .) :
LUES«‘R\)E 1S FALSE once in order to clearly define it and then solve it again to
create a solution that works.

Design Challenges: Design Is a Wicked Problem

i

The event is presented as an example of elementary forced resonance, with the wind providing
an external periodic frequency that matched the natural structural frequency, even though the
real cause of the bridge's failure was aeroelastic flutter, not resonance. A contributing factor
was its solid sides, not allowing wind to pass through the bridge's deck. Thus, its design allowed
the bridge to catch the wind and sway, which ultimately took it down.

The Tacoma Narrows bridge—an example of a wicked problem

Only by building the bridge (solving
the problem) could they learn about
the additional consideration in the
problem that allowed them to build

Until the bridge collapsed, its
engineers didn't know that
aerodynamics needed to be

considered to such an extent.

TOTAL
COLLAPSE! another bridge that still stands.

Design Challenges: Design Is a Sloppy Process

The finished software design should look well organized and clean, but the
process used to develop the design isn’t nearly as tidy as the end result.

2 Design is the most
M immediate, the most
"B | explicit way of defining
st L.l | \What products become

| in people's minds.

Jonathar__I've

Design Challenges: Design Is About Tradeoffs and Priorities

A key part of the designer’s job is
to weigh competing design
characteristics and strike a

balance among those
characteristics

Design Challenges: Design Involves Restrictions

The point of design is partly to create possibilities and partly to restrict
possibilities

The constraints of limited resources for constructing buildings force simplifications of the solution
that ultimately improve the solution.

Design Challenges: Design Is Nondeterministic

Design Challenges: Design Is a Heuristic Process ERROR

Because design is nondeterministic, design techniques tend to be heuristics— “rules of
thumb” or “things to try that sometimes work”—rather than repeatable processes that are
guaranteed to produce predictable results

Design Challenges: Design Is Emergent

Key Design Concepts

Managing Complexity Desirable Characteristics Levels of Design

Managing Complexity

Accidental and Essential Difficulties

Software development is made difficult
because of two different classes of problems:
the essential and the accidental

Fred Brooks’s landmark paper, “No Silver Bullets:
Essence and Accidents of Software Engineering” (1987).

The properties a thing happens
to have and don’t really bear on
whether the thing is what it is

The properties that a thing must
have in order to be that thing

Managing Complexity

Importance of Managing Complexity

The only profession in which a single mind is
obliged to span the distance from a bit to a few
hundred megabytes, a ratio of 1 to 10°?, or nine
orders of magnitude (pijkstra 1989)

No one’s skull is really big
enough to contain a modern
computer program (Dijkstra 1972)

The goal is to minimize the amount of a program you have to
think about at any one time.

Dividing the system Break a complicated More independent Keeping routines
into subsystems problem into simple pieces the subsystems short

Managing Complexity

How to Attack Complexity

Minimize the amount of essential complexity that
anyone’s brain has to deal with at any one time

Keep accidental complexity from needlessly
proliferating

Desirable Characteristics of a Design

,-lm ini«,hpwlm

less co -ordln..(-.'..,.j

ferdancy

Less infurmation Au, Wt €o-ordinafiod
More (nfue Mahin Foe

OATA . STAMP - C ¢ TROLL - CoMMeN - courEnT

Loose Coupling

| Leanness | High Fan-In

Low-to-Medium Fan-Out

'S TTANDARD S|

Stratification

Standard Techniques

Levels of Design

Design is needed at several different levels
of detail in a software system. Some design
techniques apply at all levels, and some
apply at only one or two.

'S
Software system 0

\. J

Division mto

subsystems/ packages ‘ D
- D/

@\ %)
Division mto classes ° @ j
within packages
| G0

B
!

Division mto data and °

routimes withun classes

Internal routine design @

The levels of design in a program. The system (1) is first organized into subsystems
(2). The subsystems are further divided into classes (3), and the classes are divided

into routines and data (4). The inside of each routine is also designed (35).

Levels of Design

Software svstem o

Division mto ‘ D

>
=
@ / ;
Division mto classes o i

within packages

Division mto data and °

. L
routines withun classes —

Internal routine design @

The levels of design in a program. The system (1) is first organized into subsystems
(2). The subsystems are further divided into classes (3), and the classes are divided

into routines and data (4). The inside of each routine is also designed (3).

—€ Software System
The first level is the entire system. Some programmers

jump right from the system level into designing classes,
but it’s usually beneficial to think through higher level
combinations of classes, such as subsystems or packages.

Levels of Design

Software system. @ Division into Subsystems or Packages
\. J The major design activity at this level is deciding how to
/[:]—‘\ partition the program into major subsystems and defining
Division into [) how each subsystem is allowed to use each other subsystem.
subsystems/packages \B D/ Within each subsystem, different methods of design might be used—choosing the approach

that best fits each part of the system.

/@\@ e

Division mto classes

within l).l('}\.l_t»"(“ A Usel’ intel'face
>A@)A@ May use several subordinate subsystems or Business Rules
\ classes for the GUI interface, command line the laws, regulations, policies,
=/ interface, menu operations, window and procedures that you encode
. - management, help system, and so forth I into a computer system
Division mto data and ° - %D ‘
routines withun classes — [% CO m m O n

System dependencies
S u bsyste m S If you're developing a program for
Microsoft Windows, why limit yourself to
the Windows environment? Isolate the
Windows calls in a Windows-interface
subsystem. If you later want to move your
program to Mac OS or Linux, all you'll have
to change is the interface subsystem

Internal routine design o

Database Access
centralize database operations in

one place and reduce the chance
(2). The .\uh__\’\h'm\ uI'L‘AIIH’h'?('I' divided into classes (3), and the classes are divided of errors in Working with the data.

The levels of design in a program. The system (1) is first organized into subsystems

into routines and data (4). The inside of each routine is also designed (35).

Levels of Design

Software system. @ Division into Subsystems or Packages
\. J The major design activity at this level is deciding how to
/[:] \ partition the program into major subsystems and defining
Division into g [—] how each subsystem is allowed to use each other subsystem.
subsystems/ packages @ C] Within each subsystem, different methods of design might be used—choosing the approach
\ 7/ that best fits each part of the system.

IMPORTANT RULE How the various subsystems can communicate?

Division mto classes °

within packages
:@:@ If all subsystems can communicate with all other subsystems, you lose
the benefit of separating them at all.
= Make each subsystem meaningful by restricting communications.

Division mto data and °

routines withun classes

L]
1 oo () '
‘ User Interface ’ [Graphics] [User Interface]0—>[Graphics ’

Internal routine design ‘ _— [Data Storage J [Application] [DatalStorage] [lA\l\)]lel(u‘_:llllllel\
. - : =) _evel Classes

Level Classes

The levels of design in a program. The system (1) is first organized into subsystems

(2). The subsystems are finther divided into classes (3), and the classes are divided

into routines and data (4). The inside of each routine is also designed (35).

[User Interface] [Graphics]
[Data Storage] [
Business Enterprise-Level

Rules Tools

Application]

Level Classes

N

J

User Interface]*—b[Graphics]

T

[Data Storage]

Application
Level Classes

™~ A\

Business < »| Enterprise-Level

[User Interface]—‘[Graphics]
[Data Storage]’—'[

Application]
Business
Rules

Level Classes
) _ | Enterprise-Level
[ools

>

Suppose for example that you define a system
with six subsystems

How many different parts of the system does a
developer need to understand at least a little bit
to change something in the graphics subsystem?
What happens when you try to use the business
rules in another system?

What happens when you want to put a new user
interface on the system, perhaps a command-line
Ul for test purposes?

What happens when you want to put data
storage on a remote machine?

e Allow communication between subsystems only
on a “need to know” basis—and it had better be
a good reason.

* |Ifin doubt, it’s easier to restrict communication
early and relax it later than it is to relax it early
and then try to tighten it up after you’ve coded
several hundred inter-subsystem calls.

e The simplest relationship is to have one
subsystem call routines in another.

* A more involved relationship is to have one
subsystem contain classes from another.

* The most involved relationship is to have classes
in one subsystem inherit from classes in another

Levels of Design

Software system @)

D SySte m.
Division mto o D
subsystems/ packages | I D
Oa) D '
Division mto classes Le’r‘s %é'A'P. .o
within packages @ .
“ ‘@, Object
(4 Oriented
(55 Programming
Division mto data and ‘ - %D “" '
routines withun classes — % oS - ’ - et
- "
»

Internal routine design @

The levels of design in a program. The system (1) is first organized into subsystems
(2). The subsystems are further divided into classes (3), and the classes are divided

into routines and data (4). The inside of each routine is also designed (35).

Division into Classes within Packages
\ J Design at this level includes identifying all classes in the

LETS KECAR..
Object
Oriented
Programming

Language Rank Types VSpoctnunRanklng
o e
Person
e @07 B
-name: String
S sewen ® T BB
e “ om Do BB
5 s T B
| co @07 SN
nee @ @A
fomsee @0 WAL
| | Sney ® ¥ w0
~nusCourses:int = © -numCourses:int = @ 10. Go & L _
~courses:String[] = (} ~courses:String[] = {)
arvdesink(] = 0 R . Ao e
ry— 12 Mot © @
address:String) 13. Assembly L
1. ot oo
mew @ @I
 wsw @D EE
PRIttt TP © O EE
"Student: name(oddress)” = = - ' 18. Visual Basic =i
“..."Teacher: name(oddress)" 19. Shell = _
oo 07 AL

https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

LETS RECAP..
j Object
T V| ' Oriented
Q % Programming

"x.“d; A e

—
W“W y
a3 ~
A

S
Inheritance
N ™\
1? / .:l-.
o | s | o | e | o | i

Polymorphism

Shape

draw()
Triangle Rectangle Cirdle
draw() draw() draw()

Encapsulation

OOP Key
Technologies

Abstraction

These slides are based on the material presented in https.//docs.oracle.com/javase/tutorial/java/concepts/

Objects

fless
&g{.?

-«

)
[|
® 0g'000
o:: Se5
% .0::00

i Pl A class is the static thing you look at in the program listing while

QQ _g;;;:;;ﬁn’g an object (instantiation of a class) is any specific entity that
= exists in your program at run time.

Book Class Instances of “Book” Class (Objects)
Book
e 1 e =T
-price:double -nou.-:Strir_\g :
e v char Elvective Java

price:double, qty:int)
+getName():String
sgetAuthor() :Author
+getPrice() :double
ssetPrice(price:double):void
+getQty():int
ssetQty(qty:int):void
stoString():String *--..

*'book-name’ by author-nome (gender) at email”™

These slides are based on the material presented in https.//docs.oracle.com/javase/tutorial/java/concepts/

A LETS RECA..
, Object

Oriented

| programming Real-world objects share two characteristics

-\ ¥ -~

W ;", -

—_— State oattribute/field Behavior method/function

class Bike {
int cadence =
int speed = 0;
int gear = 1;

0;

() { 4 Cw A OurreniSoeed = 18
void changeCadence(int newValue N, Peans o '
this.cadence = newValue; A\ _,5”j:,.~ UnRAcnce = @
} o C - - L= S atary
A jamerer®
Brabe ﬁ — et s
void changeGear(int newValue) { . Bao®
this.gear = newValue; : _ -r - e
} * 1 . c
. Cadonce
void speedUp(int increment) { AV o UL ONGoars « 27
this.speed += increment; Beabn Oy .
}] A O My Bike
void applyBrakes(int decrement) { .
: __) Change
this.speed —= decrement; S Change . rsaraSosed = 18
void printStates() { . A OC./"/ R
System.out.println(Bike Class Brake T a
"cadence: " + this.cadence 0O o O 2y e
+ " speed: " + this.speed 2 A\
+ " gear: " + this.gear /~ Change
; ’ cadonce
Foo Bike

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

d L 6TS PechP..

, Object
§ ' Oriented . I8 class Bike { I8 class BikeDemo {

.»ﬁ?gfn"ng 2 int cadence = 0; 2

e - 3 int speed = 0; 3 public static void main(String[] args) {
4 int gear = 1; 4
6 void changeCadence(int newValue) { 6 Bike bikel = new Bike();
7 this.cadence = newValue; 7 Bike bike2 = new Bike();
8 } 8
9 9
10 void changeGear(int newValue) { 10 bikel.changeCadence(50);
11 this.gear = newValue; 11 bikel.speedUp(10);
12 } 12 bikel.changeGear(2);
13 13 bikel.printStates();
14 void speedUp(int increment) { 14
15 this.speed += increment; 15
16 } 16 bike2.changeCadence(50);
17 17 bike2.speedUp(10);
18 void applyBrakes(int decrement) { 18 bike2.changeGear(2);
19 this.speed —-= decrement; 19 bike2.changeCadence(40);
20 } 20 bike2.speedUp(10);
21 21 bike2.changeGear(3);
22 void printStates() { 22 bike2.printStates();
23 System.out.printin(23
24 "cadence: " + this.cadence 24 s
25 + " speed: " + this.speed
26 + " gear: " + this.gear
. BikeDemo. java
29 s

Bike.java What is the output?

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

L

LETS KECAP.
Object
Oriented

Programming
) ~—

Encapsulation

The process of wrapping code and data
together into a single unit

Data/Information Hiding

The variables of a class will be hidden from other classes, and can
be accessed only through the methods of their current class

Oweront class Ditlerent package Unvrelated class Dwterent module
Bul same package | bul subclass but same madule and pl not exporied
Modifier Class Package Subclass World
package p1; package pl; package p2; package p2; package x; public Y Y Y Y
class A { class B { class C extends A { class D { class F {
private int {; protected Y Y Y X
int §;
protected ist k; no modifier Y Y X X
public int 1;
} } } ' ' private Y X X X
Accessitie Inaccessbile

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

‘ LETS KECAP. .
Q Inheritance

Programming

S Different kinds of objects often have a certain amount in
B _,;" 7 .
SLo common with each other
/ Super Class
Object-oriented programming allows 0,4

classes to inherit commonly used
state and behavior from other classes
and let you focus on the features that
make a specific class unique

: PART TIME FiJLL TIME : :
00

———
————)
ONLY NOouUrtian Sae Roa2 Bae o™ Sae

MountainBike Bicycle { TandemBike Bicycle {

b

RoadBike Bicycle {

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

oo eecee. Interfaces

%' Oriented
Programming Define class instances interaction with the outside world through the methods that they expose

~ —

-\ ¥ -

= ‘;’,, »

—_—
interface Bicycle {

void changeCadence(int newValue);

void changeGear(int newValue);

void speedUp(int increment); i i
Implementing an interface allows a

class to become more formal about the
oy | ol printstates)s | behavior it promises to provide.

Coo~NOOULPEAWNPR

void applyBrakes(int decrement);

Interfaces form a contract between the class
and the outside world, and this contract is
enforced at build time by the compiler.

If a class claims to implement an interface, all methods
defined by that interface must appear in its source code.

class TandemBike implements Bicycle {

class MountainBike implements Bicycle {

| ¥
_

b

class RoadBike implements Bicycle {

}.“

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

@W Interfaces

s Oriented)))]) .
Programming Define class instances interaction with the outside world through the methods that they expose

~ -
=

“,__ —

e

—

Signing into Facebook and not talking to anyone
Just stare at peoples statuses like

public interface SomethingIsWrong {

void foo(int value) {
System.out.println("Something is wrong!");
I3

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

A | ETS RECAP..

Abstract Classes/Methods

Programming

i = An abstract class is a class that is declared abstract and cannot be instantiated but can be sub-
5, classed. An abstract method is a method that is declared without an implementation

—

abstract class GraphicObject {
int x, vy;

void moveTo(int newX, int newY) {

}

abstract void draw();
abstract void resize();

GraphicObject
class Rectangle extends GraphicObject { | class Circle extends GraphicObject {
| | | |
void draw() { = = - void draw() {
Rectangle Line Bezier Circle
b

}

void resize() {

i

void resize() {

}
by

by

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

8 o5 pecne.

v Abstraction

Programming

The process of hiding the implementation details from the user, only the functionality will be provided to
the user. In other words, user will have the information on what the object does instead of how it does it.

s
r‘;, '
»

The Implementation

In Java, Abstraction is achieved using
abstract classes, and interfaces

Data

Application Abstraction

Implementation

Application
Programmer

Utility
Programmer

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

B\ ETS KecaP..

Programmin

Shape

draw()
Triangle Rectangle Cirde
draw() draw() draw()

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Polymorphism

=1 The ability of an object to take on many forms

Employee

~egpCode! int
«firstName: String
«~lastSame: String

wpayirt doudle

1

HourlyEmployee | SalariedEmployee |

~rate: doudble

~0ooemislonkate) double

~workinglours: double ~grossSales: double

‘pay(): docble

~basicr dowble
payi)e double

LETS KECAP..

8§ Packages

" Programming

T Namespaces that organize a set of related classes and interfaces

’{I]

l_— |

- classes ‘w4 myproject

1 B |
4 4 — ArrayList
| |

- “ '--{ Ny(lau.jan]

PriorityQueue

— LinkedList

LinkedHash Set

t

TreeSet

Vector

:_
I-

Stack

ArrayDeque

--{R-;(lan,clus]

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

LETS RECAP..
j Object
T V| ' Oriented
Q % Programming

"x.“d; A e

—
W“W y
a3 ~
A

S
Inheritance
N ™\
1? / .:l-.
o | s | o | e | o | i

Polymorphism

Shape

draw()
Triangle Rectangle Cirdle
draw() draw() draw()

Encapsulation

OOP Key
Technologies

Abstraction

These slides are based on the material presented in https.//docs.oracle.com/javase/tutorial/java/concepts/

Objects

fless
&g{.?

-«

)
[|
® 0g'000
o:: Se5
% .0::00

Levels of Design

Software system o

Division mto []

Division mto classes

within packages

Division mto data and °

. -
routines withun classes — ‘%

Internal routine (i{'\'l}‘ll 0

The levels of design in a program. The system (1) is first organized into subsystems
(2). The subsystems are further divided into classes (3), and the classes are divided

into routines and data (4). The inside of each routine is also designed (35).

Division into Data & Routines within Classes
When you examine the details of the routines inside a class,
you can see that many routines are simple boxes but a few are
composed of hierarchically organized routines, which require
still more design.

The act of fully defining the class’s routines often results in a better

understanding of the class’s interface, and that causes corresponding
changes to the interface—that is, changes back at Level 3.

Levels of Design

'SR
Softwase system - @ Internal Routine Design
\. J Design at the routine level consists of laying out the detailed
/[:J) functionality of the individual routines. The design consists of
Division into o [] activities such as writing pseudo-code, looking up algorithms
subsystems/ packages CJD in reference books, deciding how to organize the paragraphs
~/

of code in a routine, and writing programming-language code.

Internal routine design is typically left to the individual programmer
working on an individual routine.

(avawn
Division mto classes ‘ @
within packages
| 30
> >

Division mto data and °

. -
routines withun classes — ‘%

Internal routine (i{'\'l}‘ll 0

The levels of design in a program. The system (1) is first organized into subsystems
(2). The subsystems are further divided into classes (3), and the classes are divided

into routines and data (4). The inside of each routine is also designed (35).

Design Building Blocks: Heuristics

Because design is nondeterministic, skillful application of an effective set of
heuristics is the core activity in good software design

GOAL: Minimal Complexity

Design Heuristics: Find Real-World Objects

|Identify the objects and their
attributes (methods and data)

Determine what can be done to
each object

Determine what each object is
allowed to do to other objects

Determine the parts of each object
that will be visible to other objects

Define each object’s public
interface

Computer programs are usually Identifying the objects’ attributes is no more complicated than identifying the objects

based on real-world entities themselves. Each object has characteristics that are relevant to the computer program.
Client
Employee
name
name billingAddress

What are the operations performed on each
object?

The two generic things objects can do to each
other are containment and inheritance.

title accountBalance
billingRate currentBillingAmount

GetHoursForMonth() EnterPayment()

1 1 billingEmployee 1 17 clientToBil
clientToBill
* I * * bills

Timecard Bill

hours billDate
date * 0.1

pa

sroiectCode « BillForClient()
projecit-ode billingRecords

The visibility of the parts of an object should be determined.
This decision has to be made for both fields and methods

Define the formal, syntactic, programming-language level
interfaces to each object.

The data and methods the object exposes to every other
object is called the object’s “public interface.” The parts of
the object that it exposes to derived objects via inheritance
is called the object’s “protected interface.”

Design Heuristics: Form Consistent Abstractions

From a complexity point of view, the principal benefit of abstraction is that it allows you to ignore irrelevant details

Good programmers create abstractions at the routine-interface
level, class-interface level, and package-interface level

Design Heuristics: Encapsulate Implementation Details

Encapsulation picks up where abstraction leaves off. It helps managing complexity by forbidding you
to look at the complexity.

Encapsulation says that, not only are you allowed to take a simpler view of a complex
concept, you are not allowed to look at any of the details of the complex concept.
What you see is what you get—it’s all you get!

Design Heuristics: Inherit

Inheritance is one of object-oriented programming’s most powerful tools. It can provide great benefits when used
well, and it can do great damage when used naively.

Object-oriented programming allows
classes to inherit commonly used
state and behavior from other classes
and let you focus on the features that
make a specific class unique

Design Heuristics: Hide Secrets (Information Hiding)

Information hiding gives rise to the concepts of encapsulation and modularity and it is associated with the concept
of abstraction.

...........

On the Criteria To Be
Used in Decomposing
Systems into Modules

Camegic-Mellon University

David Parnas 1972 Fred Brooks 1995

ii

Information hiding is a particularly powerful heuristic for Software’s
A good class interface is like the tip of an iceberg, Primary Technical Imperative because, beginning with its name and

leaving most of the class unexposed. throughout its details, it emphasizes hiding complexity

Design Heuristics: Hide Secrets (Information Hiding)

A good class interface is like the tip of an iceberg,

leaving most of the class unexposed.

Secrets and the Right to Privacy

In information hiding, each class (or package or routine) is characterized by the
design or construction decisions that it hides from all other classes. The secret
might be an area that’s likely to change, the format of a file, the way a data type
is implemented, or an area that needs to be walled off from the rest of the
program so that errors in that area cause as little damage as possible.

Design Heuristics: Hide Secrets (Information Hiding)

Two Categories of Secrets

Barriers to Information Hiding

Value of Information Hiding

Hiding complexity so that your brain doesn’t
have to deal with it unless you’re specifically
concerned with it

Excessive distribution of information

Circular dependencies

Information hiding is a theoretical techniques
that has indisputably proven its value in
practice, which has been true for a long time

Hiding sources of change so that when
change occurs, the effects are localized

Class data mistaken for global data

Perceived performance penalties

Large programs that use information hiding
were found years ago to be easier to modify—
by a factor of 4—than programs that don’t

Information hiding is part of the foundation of
both structured and object-oriented design.

Design Heuristics: Identify Areas Likely to Change

Accommodating changes is one of the most challenging aspects of good program design. The goal is to isolate
unstable areas so that the effect of a change will be limited to one routine, class, or package

Identify items that Separate items that are Isolate items that seem

seem likely to change likely to change likely to change

Nonstandard
) Hardware
Business rules . Input and output language
dependencies

features

Difficult design .

- . Data-size
and construction Status variables)
areas constraints

Areas Likely to Change

A good technique for identifying areas likely to change is first to identify the minimal subset of the program
that might be of use to the user. The subset makes up the core of the system and is unlikely to change.

Design Heuristics: Keep Coupling Loose

Coupling describes how tightly a class or routine is related to other classes or routines.

The goal is to create classes and routines with small,
direct, visible, and flexible relations to other classes

f \O P and routines, which is known as “loose coupling.

O Lo .
Q }) @;{} . Size
7 Coupling

: Criters Visibility
"“”“' Np ’ HT riteria
lrss in‘lcrolgP ‘6

l«ss to-ordlng,l] ‘“j Merc lh""demm

W cor s : :
Less infurmation Aew, Mere ,C:ﬁf,'i?,“ﬁ%‘ Kinds of Coupling
on - 7]

Flexibility

Simple-data-parameter coupling

OATA . STAMP - € ¢ LTROLL - COrMeN - CourENT

Simple-object coupling

Classes and routines are first and foremost intellectual tools for
reducing complexity. If they’re not making your job simpler,

they’re not doing their jobs. Semantic coupling

Object-parameter coupling

Design Heuristics: Look for Common Design Patterns

Design patterns provide the cores of ready-made solutions that can be used to solve many of software’s most
common problems

[T |
— Praxy =1 P Composie Buikder g‘. @
R B Trve S ot ¢ Comporams 1 hon S Pve (resone
[a——]
Wt bl ? “',m Wt Wt
L Pa e S 0 Dee v P & e v o e vy Cowmywas cwumew o ve. - 3 o
m.:um':mm P Tt e - m’“”mw‘- -Mhthm.
Corcrentnper Jra— A vt A G- é [4L o g . P O Ot
| oo, T . []) —~ree o ve
——— Foabgont || Peasy vty
.
S . et G
APECrG : on

Design Heuristics: Look for Common Design Patterns

Design patterns provide the cores of ready-made solutions that can be used to solve many of software’s most
common problems

Patierm

Description

ADSITIACT Factory

Apter
Bndoe

LComMpostsy

Decorator
Facoe

Fatnory Meonod

teryione

OOusrver

Singleton

Srategy

Tempiane Meonod

SUPEOITS Creation Of sets Of netaaed obyects Dy peafying the Und
of et but ot the kings of each speciic obiect

Conwverts the interface of 3 class 10 a diferent intertace

By a0 lariade 200 40 MNDISMSMALICN i JUCN & wary That
SV Can vy witRoul the Cther vy

Conmsts Of 0 OBHCT That COnLair AABUONM SO Of its Owe
TyPe 40 TR Chai OO0 Cart Iraract with [N 100 i Ot and
NOE concerm st with ol The cetaded objects

ATIAChes PespONSDIRTeS 50 2N OReCT Gymamically without Cresang
POCRC b aeses for cach possbie CONfQUration Of respOrsilities
Prowvides » conssient IMertace 10 Code That wouldes otherwise
O 3 CONSHDME i Tace

PSS Clases Cerved 150 2 SPOCIIC Do Class without
NOOONG 1O ket Tradk Of thr INCIVIOUS Cerved Chises anywhare
Dut the Faciory Methoo

A werver Obpect thaet provices S00rs 50 each slemens in & st
wuentiely

Keeps mdtiple ety In synch with one another by making an
object reaponubie for notifyng the set of related obsects abont
CNANOES 10 My mamber Of the set

Provioes Qlobad 2008S 10 3 Chiss Thae has One and Only One Intance
Defines 2 set of 2gonthimes O DENaVIONs That are Oynamicaly
Nierchangaabie with each otrwy

Defines the ssrucoure of an dgorehm b leaves some of the
PN IO lAON 10 Dot

Reduce complexity by providing ready-made abstractions
Reduce errors by institutionalizing details of common solutions
Provide heuristic value by suggesting design alternatives

Streamline communication by moving the design dialog to a higher level

One potential trap with patterns is force-fitting code to use a
pattern. In some cases, shifting code slightly to conform to a
well-recognized pattern will improve understandability of the
code. But if the code has to be shifted too far, forcing it to look
like a standard pattern can sometimes increase complexity.

Another potential trap with patterns is feature-itis: using a
pattern because of a desire to try out a pattern rather than
because the pattern is an appropriate design solution.

Design Heuristics: Other Heuristics

Aim for Strong Cohesion Build Hierarchies Formalize Class Contracts
Cohesion refers to how closely all the routines Hierarchies are a useful tool for reducing complexity Contracts are useful for managing complexity
in a class or all the code in a routine support a because they allow you to focus on only the level of because, at least in theory, the object can
central purpose—how focused the class is detail you’re currently concerned with. safely ignore any noncontractual behavior.
Assign Responsibilities Design for Test Avoid Failure
Asking what each object A thought process that can yield interesting The high-profile security lapses of various well-known systems
should be responsible for design insights is to ask what the system will the past few years make it hard to avoid security vulnerabilities
look like if you design it to facilitate testing. but careful considerations should be taken to known failures.
Choose Binding Time Consciously Make Central Points of Control Consider Using Brute Force
Binding time refers to the time a specific value is The Principle of One Right Place—there should be One A brute-force solution that works is better
bound to a variable. Code that binds early tends Right Place to look for any nontrivial piece of code, and than an elegant solution that doesn’t work
to be simpler, but it also tends to be less flexible. One Right Place to make a likely maintenance change”
Draw a Diagram Keep Your Design Modular
You actually want to leave out most of the 1000 words Modularity’s goal is to make each routine or class like a
because one point of using a picture is that a picture can “black box”: You know what goes in, and you know what

represent the problem at a higher level of abstraction comes out, but you don’t know what happens inside.

Design Practices

Heuristics related to design attributes—what you want the completed design to
look like.

Design Practices: Iterate

Design is an iterative process. You don’t usually go from point A only to point B; you go from point A to point B and
back to point A

@ seed

with

RouGH @
\DEAS
[

N
SKETCH As you cycle through candidate designs and try different
EACH IDEA @ approaches, you’ll look at both high-level and low-level views.
CRITIQuUE
EACH The big picture you get from working with high-level issues
IDEA will help you to put the low-level details in perspective. The
' details you get from working with low-level issues will provide a
Ny) foundation in solid reality for the high-level decisions.
r;:e,;“e. L ":{.:e, implemenk
Y b9 the REALLY
oeks

theinnographer.com GH® &

This image is shared under creative commons as part of the DIY Innovation Toolkit™

Design Practices: Divide and Conquer

As Edsger Dijkstra pointed out, no one’s skull is big enough to contain all the details of a complex program, and that
applies just as well to design

PINKY ano THE BRINW

TAKE OUER

THE

Incremental refinement is a powerful tool for
managing complexity.

Divide the program into different areas of concern, then tackle
each of those areas individually. If you run into a dead end in
one of the areas, iterate!

Design Practices: Top-Down and Bottom-Up

Top-down design begins at a high level of abstraction.
You define base classes or other nonspecific design
elements. As you develop the design, you increase the
level of detail, identifying derived classes, collaborating
classes, and other detailed design elements.

Bottom-up design starts with specifics and works
toward generalities. It typically begins by identifying
concrete objects and then generalizes aggregations of
objects and base classes from those specifics

Design Practices: Experimental Prototyping

You can’t fully define the design problem until you’ve at least partially solved it.

Prototyping means writing the absolute minimum
amount of throwaway code that’s needed to
answer a specific design question.

A risk of prototyping arises when developers do
not treat the code as throwaway code.

Design Practices: Collaborative Design

In design, two heads are often better than one, whether those two heads are organized formally or informally

Design Practices: How Much Design Is Enough?

Sometimes only the barest sketch of an architecture is mapped out before coding begins. Other times, teams create
designs at such a level of detail that coding becomes a mostly mechanical exercise.

Level of Detal Needed

In Design Belove Documentaton
Factor Comstrection Formalay
Deslgrv comnouction team Low Detad Low Formalny
Pk Oeep S DROence In
APPIATION Mea
Dty Comnucnion L Medum Dotas Madun Formainy
hirk M Expatencs But
5 Inexperienced In the
appiications area
Desigrvcomouction team Medum to High Desad Low-Nedium Formaly

5 NERDMNeNced

DotV COMmIrucTion L Medum Detad —
Nk OO BO-NgN

tunover

Appicaton s Hgh Detat High Formaiery

sriety -crmcal

Appi avon i Mecum Detas Madum-High Formainy
mason-crmca

Project & smal Low Detas Low Formaliny

Project & nge Madium Detall Modum Formatiny
Sofware & expecied 0 Low Detad Low Formaliny

have 3 short Aletime

fweseks o montin)

SOMware 1 expecied %O Mechum Detasl Mactum Formaiiy
e 4 long Sfetirme

{morths or w\\

Design Practices: Capturing Your Design Work

Insert design documentation into the code itself
Capture design discussions and decisions on a Wiki

Write e-mail summaries
Use a digital camera
Save design flip charts
Use CRC (Class, Responsibility, Collaborator) cards

Create UML diagrams at appropriate levels of detail

SUMMAR

Software’s Primary Technical Imperative is managing complexity . This is greatly aided by a
design focus on simplicity.

Simplicity is achieved in two general ways: minimizing the amount of essential complexity
that anyone’s brain has to deal with at any one time, and keeping accidental complexity
from proliferating needlessly.

Design is heuristic. Dogmatic adherence to any single methodology hurts creativity and
hurts your programs

Good design is iterative; the more design possibilities you try, the better your final design
will be.

Information hiding is a particularly valuable concept. Asking “What should | hide?” settles
many difficult design issues.

Lots of useful, interesting information on design is available outside this book. The
perspectives presented here are just the tip of the iceberg.

Working Classes

In the dawn of computing, programmers thought about programming in terms of statements.
Throughout the 1970s and 1980s, programmers began thinking about programs in terms of routines.
In the twenty-first century, programmers think about programming in terms of classes.

A class is a collection of data and
routines that share a cohesive, well-
defined responsibility. A class might
also be a collection of routines that
provides a cohesive set of services
even if no common data is involved

Maximizes the portion of a program that you can
safely ignore while working on another section of code

Class Foundations: Abstract Data Types (ADTs)

An abstract data type is a collection of data and operations that work on that data.

b abstract data type E

Web

Understanding ADTs is essential to understanding
object-oriented programming.

Also try: ADT HL7 Message Types - Abstract Data Types in Programming - Stac... An ADT might be a graphics window with all the
.. operations that affect it, a file and file operations,
an insurance-rates table and the operations on it,
Abstract data type or something else

In computer science, an abstract data type (ADT) is a mathematical model
for data types where a data type is defined by its behavior (semantics)

Tap into the power of being able to work in the

from the point of view of a user of the data, specifically in terms of

possible values, possible operations on data of this type, and the prObIem domain rather than at the low-level
behavior of these operations. implementation domain!

Abstract data type - Wikipedia, the free encyclopedia Instead of inserting a node into a linked list, you can add a cell to
https://en.wikipedia.org/wiki/Abstract_data_type a spreadsheet, a new type of window to a list of window types,

or another passenger car to a train simulation
See more about Abstract data type

Y
' ".n'nu‘

Charles
alﬂlﬂhﬂh
assHn
P Adron

' Dominic

Class Foundations: Abstract Data Types (ADTs)

Suppose you're writing a program to control text output to the screen using a
variety of typefaces, point sizes, and font attributes (such as bold and italic)

aom

B
Jrim

« Wyatt

Foden
Bentle:

v Tirjanng

Savonnah

s APl
' |"-f.é.(k3‘.’.
 Viclet

I'miStan

David

' (‘amden

' Sebastion

Nathan

Hunter

A group of font routines bundled with
the data—the typeface names, point

Using ADT

sizes, and font attributes—they

currentFont.
currentFont.
currentFont.
currentFont.
currentFont.
currentFont.
currentFont.

operate on.

SetSizeInPoints(sizeInPoints)
SetSizeInPixels(sizeInPixels)
SetBoldOn()

SetBoldOff()

SetItalicOn()

SetItalicOff()

SetTypeFace(faceName)

Not Using ADT

Ad hoc approach to manipulating fonts. For
example, if you need to change to a 12-
point font size, which happens to be 16

pixel high

currentFont.size = 16

currentFont.size = PointsToPixels(12)
currentFont.sizeInPixels = PointsToPixels(12)
currentFont.sizeInPixels = PointsToPixels(12)
currentFont.attribute = currentFont.attribute or 0x02
currentFont.attribute = currentFont.attribute or BOLD

currentFont.bold = True

Class Foundations: Abstract Data Types (ADTs)

Benefits

You can hide Changes don’t affect the You can make the interface
implementation details whole program more informative
It’s easier to improve The program is more The program becomes
performance obviously correct more self-documenting
You don’t have to pass You're able to work with real-world entities rather than

data all over your program with low-level implementation structures

Class Foundations: Abstract Data Types (ADTs)

Suppose you’'re writing software that controls the cooling system for a nuclear
reactor. You can treat the cooling system as an abstract data type.

coolingSystem.GetTemperature()
coolingSystem.SetCirculationRate(rate)
coolingSystem.OpenValve(valveNumber)
coolingSystem.CloseValve(valveNumber)

The specific environment would determine the
code written to implement each of these
operations.

The rest of the program could deal with the
cooling system through these functions and
wouldn’t have to worry about internal details
of data-structure implementations, data-
structure limitations, changes, and so on.

Class Foundations: Abstract Data Types (ADTs)

Cruise Controd

Se1 spesa

Get ourrent setings
Resume former speed
Deactivate

List

INUakTe sz
INS&MT Neen In it
Ramove item from st
Read next item froen list

Build or use typical low-
level data types as ADTs,

Blerder

Tan on

Tuen off

S speed

Start "Insta-Pulverize”
Stop "Insta- Pulvernze”

Light
Tarmn on
Taen off

not as low-level data types

Fuel Tank

Fib tank

Drain 1ark

Gt 1k capechy
Get tank status

MDige stack

Push inem oMo STack
Pop Bemn from stack
Read top of ik

Treat common objects
such as files as ADTs

Se1 of Help Soeemns

ADG help topkc
Remove help 10pk

See current help 1opkc
Dnplay Pedp screen
Reemove hep dapley
Desplay Badp inchex

BaCk up %0 previous screen

Poinmter
G0t pONtEr 1o NEW Memory

Dnpose of memaory bom
aNING POIter

Change amourt of memaory
Mocates

Treat even simple
items as ADTs

Meny
St now mery
D ™)

Add meny Bem
Reenowe meey e
Actheate mery em
Dedctivate miry item
Dvsplay meru

Hoe mery

Gt merw choxce

Open e
Reaad e
Write fie
St current fie locaton
Clone fie

Eevator
Move up one Boor
Move cown one fSoor
Move %0 specific Soor

Report currene Soor
Retum to home Soor

Refer to an ADT
independently of the
medium it’s stored on

Class Foundations: Abstract Data Types (ADTs)

Handling Multiple Instances of Data with ADTs in Non-Object-Oriented Environments

SetCurrentFontSize(sizeInPoints) Option 1: Explicitly identify instances
SetCurrentFontBoldOn() each time you use ADT services.
SetCurrentFontBoldOff()

SetCurrentFontItalicOn()

SetCurrentFontItalicOff() Option 2: Explicitly provide the data
SetCurrentFontTypeFace(faceName) used by the ADT services.

CreateFont(fontId)

DeleteFont(fontId) Option 3: Use implicit instances
SetCurrentFont(fontId)

Good Class Interfaces

The first and probably most important step in creating a
high-quality class is creating a good interface.

Creating a good abstraction for the interface to represent and ensuring that the details remain hidden
behind the abstraction.

Good Abstraction Good Encapsulation

Good Class Interfaces: Good Abstraction

A class interface provides an abstraction of the implementation that's hidden behind the interface

r
_

Employce

class Employee {
public:
// public comstructors and destructors
Erployee();
Employee(
FullName name,
String address,
String workPhone,
String homefhone,
Taxid taxidNusmber,
JobClasssfication jobllass
b
virtual ~fmployee();

// public routines

FulTName GetName() const;

String GetAddress() const;

String GetWorkPhone() const;

String GetHomePhone() const;

TaxId GetTaxIdNumbar() const;

JobClassi fication GetlobClassification() const;

It would contain data describing private:
the employee's name, address, Sy

phone number, and so on. It , , B ‘
. L. Internally, this class might have additional routines and data to
would offer services to initialize support these services, but users of the class don't need to

and use an em p|oyee know anything about them, so it is great.

Good Class Interfaces: Good Abstraction

A class interface provides an abstraction of the implementation that's hidden behind the interface

elans Progres {
pb g

N o RET ST

vord Ees 5l peCommandStack O

vord Pahlommard(Cormand command)
Command Pugl ommardd ()

vard et domeCammarsdbt ach ()

vord Eestvals peflaportforsattongl)
vord Tormatfaportl Report repert)
vord Friatisportl Report repert)
vord EeatsalsnntilobalOntal);

vord ShutdownGlobalOate();

Pprivate:
|

It's hard to see any connection among the command
stack and report routines or the global data. The class
interface doesn't present a consistent abstraction. The
routines should be reorganized into more focused
classes, each of which provides a better abstraction in
its interface.

class Progras {
public:
// public routines
void ImtializeUserinterface();
vord ShutDownlserInterface();
void IntialszeReporta();
void ShutDownReports();
private:

hi

The cleanup of this interface assumes that some of
the original routines were moved to other, more
appropriate classes and some were converted to
private routines used by InitializeUserlInterface() and
the other routines.

Good Class Interfaces: Good Abstraction

The pursuit of good abstract interfaces gives rise to several guidelines for
creating class interfaces.

Present a consistent Each class should implement one and only one ADT.

|eve| of abstraction N If you find a class implementing more than one ADT, or if you
th | int £ can't determine what ADT the class implements, it's time to
€ Class INterface reorganize the class into one or ore well defined ADTs.
One Class = One ADT [#1 function #2 1to1 function
not 1tol
{(29),(4,5),(11,5)} {(29),(4,6),(11,5)}
2 2 ‘

- 5h
—
Y
—
—_
i
ven Tl wrt e e

Domain Range Domain Range

Good Class Interfaces: Good Abstraction

The pursuit of good abstract interfaces gives rise to several guidelines for
creating class interfaces.

. C++ Bxampie of & Class Interface with Mixed Levels of Abstraction
Present a COﬂSlStent ﬁ Class Employeslanses: piblie LastCantainer {

. . § . peblsc:
level of abstraction in - .

I/ peblic rowtines

the class interface [The soviacion of Sese ..{- id Sl liveet Seeleren coulosss s

atren ¢ ol B erghyee’ vord Removelsployee! Erployee enployee)|

One Class = One ADT L | 32

i Eoplayes NestItemInlat();

L\ A w0 oA D }—0: Esployes Firstltem(),

MY B T T L Eoplayes LastIten();

priavate:

| F

Ask yourself whether the fact that a container class is used should be part of the abstraction. Usually that's
an implementation detail that should be hidden from the rest of the program.

Good Class Interfaces: Good Abstraction

The pursuit of good abstract interfaces gives rise to several guidelines for
creating class interfaces.

Ces Exampie of a Class Interface with Consistent Levels of Abstraction
Present a consistent el i e

peblirc:
level of abstraction in
the class interface

[/ pablic rostines

roulrws o e M D vo'rd Resavelnployee(Eaplayes smployes)

[:h- T acvon of Ml e Jo" vord Addirployeel Leployes erployes)

ey’ e Crployee Nextingloyee();

One Class = One ADT ’ * Erployen Firstimployee() |
Crployee Lastiegloyee();

.

Private!
Thaet o s oum B .-—o LastContarmer n Lleployeel 12t
Llotone Myt frow
Pecddor | I
Programmers might argue that inheriting from That argument fails the main test for inheritance, which is, "Is
ListContainer is convenient because it supports inheritance used only for "is a" relationships?“ To inherit from
polymorphism, allowing an external search or sort ListContainer would mean that EmployeeCensus "is a“

function that takes a ListContainer object. ListContainer, which obviously false

Good Class Interfaces: Good Abstraction

public class Employee {
private String name;
private String address;
private int number;

public Employee(String name, String address, int number) {
System.out.println("Constructing an Employee™);
this.name = name;
this.address = address;
this.number = number;

}

public void mailCheck() {
System.out.println(“Mailing a check to " + this.name + " " + this.address);

}

public String toString() {
return name + " " + address + " " + number;

}

public String getName() {
return name;

}

public String getAddress() {
return address;

}

public void setAddress(String newAddress) {
address = newAddress;

}

public int getNumber() {
return number;

}

public class Salary extends Employee {
private double salary; // Annual salary

public Salary(String name, String address, int number, double salary) {
super(name, address, number);
setSalary(salary);

}

public void mailCheck() {
System.out.println("Within mailCheck of Salary class ");
System.out.println("Mailing check to " + getName()
+ " with salary " + salary);

}

public double getSalary() {
return salary;

}

public void setSalary(double newSalary) {
if(newSalary >= 0.0) {
salary = newSalary;
}
}

public double computePay() {
System.out.println("Computing salary pay for " + getName());
return salary/52;

Good Class Interfaces: Good Abstraction

The pursuit of good abstract interfaces gives rise to several guidelines for
creating class interfaces.

Present a consistent Be sure you understand Provide services Move unrelated
level of abstraction what abstraction the in pairs with information to
in the class interface class is implementing their opposites another class
Make interfaces programmatic Beware of erosion of the Don’t add public members
rather than semantic when interface’s abstraction that are inconsistent with the
possible under modification interface abstraction

Consider abstraction and
cohesion together

Good Class Interfaces: Good Encapsulation

® 0.° Abstraction helps to manage complexity by providing models that allow
“:.:‘. you to ignore implementation details. Encapsulation is the enforcer
Qo

S0
{.0. ® that prevents you from looking at the details even if you want to
&

..?

~ Variables |

Without encapsulation, abstraction tends to break down

Good Class Interfaces: Good Encapsulation

Minimize accessibility of classes and members

If you're wondering whether a specific

routine should be public, private, or If exposing the routine is consistent with

protected, one school of thought is the abstraction, it's probably fine to

that you should favor the strictest expose it. If you're not sure, hiding more
level of privacy that's workable is generally better than hiding less.

Meyers 1998, Bloch 2001

Good Class Interfaces: Good Encapsulation

Don’t expose member data in public

Exposing member data is a violation of encapsulation and
limits your control over the abstraction

float GetX();

) float GetY();

:{Oat X3 float GetZ();
oot o) void SetX(float x);
’ void SetY(float y);
void SetZ(float z);

Good Class Interfaces: Good Encapsulation

Avoid putting private implementation details into a class’s interface

With true encapsulation, programmers would not be able to see implementation details at all

C++ Example of Exposing a Class’s Implementation Details
class Employee {

public:

Employee(
FullName name, C++ Example of Hiding a Class’s Implementation Details
String address, class Employee {
string workPhone, public:
String homePhone, R
TaxId taxIdnNumber, Employee(...):
JobClassification jobClass

) (- FuliName GetName() const;

String GetAddress() const;
Fuliname GetName() const;

String GetAddress() const; private:
pes ‘chwhcimpbnwnubaw ; o EmployeelImplementation *m_implementation;
N _ private: details are hidden behind ¥
Here are the exposed feam| STring m_Name; the pointer
| implementation details String m_Address;

|_int m_jobClass;

}:

Good Class Interfaces: Good Encapsulation

Don’t make assumptions about the class’s users

A class should be designed and implemented to adhere to the contract implied by the class interface. It
shouldn’t make any assumptions about how that interface will or won’t be used,

// 1initialize x, y, and z to 1.0 because DerivedClass blows
// up if they're initialized to 0.0

Good Class Interfaces: Good Encapsulation

Favor read-time convenience to write-time convenience

Code is read far more times than it’s written, even during initial development

Favoring a technique that speeds write-time
convenience at the expense of read-time
convenience is a false economy.

Good Class Interfaces: Good Encapsulation

Be very, very wary of semantic violations of encapsulation

The difficulty of semantic encapsulation compared to syntactic encapsulation is similar.

Not calling Class A’s InitializeOperations() routine because you know that Class A’s PerformFirstOperation() routine calls it
automatically.

Not calling the database.Connect() routine before you call employee.Retrieve(database) because you know that the
employee.Retrieve() function will connect to the database if there isn’t already a connection.

Not calling Class A’s Terminate() routine because you know that Class A’s PerformFinalOperation() routine has already
called it.

Using a pointer or reference to ObjectB created by ObjectA even after ObjectA has gone out of scope, because you know
that ObjectA keeps ObjectB in static storage and ObjectB will still be valid.

Using Class B’s MAXIMUM _ELEMENTS constant instead of using ClassA.MAXIMUM_ELEMENTS , because you know that
they’re both equal to the same value.

Good Class Interfaces: Good Encapsulation

Watch for coupling that’s too tight

In general, the looser the connection, the better

Minimize accessibility of classes and members.

Make data private rather than protected in a L oroeverce
base class to make derived classes less tightly o

coupled to the base class.

Avoid exposing member data in a class’s public
interface

Be wary of semantic violations of encapsulation

Observe the “Law of Demeter”

Cisa

“stranger”

to A*

Messages from A to

\\ B are OK

Messages from Ato
C are discouraged

C

A

*Note: a friend of a
friend is a stranger.

Design and Implementation Issues

Defining good class interfaces goes a long way
toward creating a high-quality program.

Design and Implementation Issues

Containment (“has a” Relationships)

Containment is the simple idea that a class contains a primitive data element or object. Inheritance is
more popular than containment, not because it's better.

Implement “has a” through Implement “has a” through private Be critical of classes that contain more
containment inheritance as a last resort than about seven data members
An employee “has a” name, “has a” phone In some instances you might find that you can’t The number “7+2” has been found to be a
number, “has a” tax ID. You can usually achieve containment through making one number of discrete items a person can
accomplish this by making the name, object a member of another

remember while performing other tasks
phone number, and tax ID member data of

the Employee class.

Design and Implementation Issues

Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to
create simpler code by defining a base class that specifies common elements of two or more derived classes.

For each member routine, will the routine
be visible to derived classes? Will it have a
default implementation? Will the default
implementation be overridable?

Implement “is a” through
public inheritance

When a programmer decides to create a new class
by inheriting from an existing class, that
programmer is saying that the new class “is a”
more specialized version of the older class.

For each data member (including variables,
named constants, enumerations, and so
on), will the data member be visible to

derived classes?

If the derived class isn’t going to adhere
completely to the same interface contract
defined by the base class, inheritance is not the
right implementation technique. Consider
containment or making a change further up the
inheritance hierarchy.

Design and Implementation Issues

Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to
create simpler code by defining a base class that specifies common elements of two or more derived classes.

De5|g.n and. document If a class isn’t designed to be inherited from, make its members
for inheritance or non-virtual in C++, final in Java, or non-overridable in
prohibit it Microsoft Visual Basic so that you can’t inherit from it.

Inheritance adds complexity to a program,
and, as such, it’s a dangerous technique

Design and Implementation Issues

Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Adhere to the Liskov

Substitution Principle
(LSP)

Barbara Liskov argued that you shouldn’t
inherit from a base class unless the derived
class truly “is a” more specific version of
the base class

Subclasses must be usable through the base class interface
without the need for the user to know the difference. In other

words, all the routines defined in the base class should mean
the same thing when they’re used in each of the derived
classes.

If you have a base class of Account and derived classes of
CheckingAccount, SavingsAccount, and AutoLoanAccount, a
programmer should be able to invoke any of the routines derived
from Account on any of Account's subtypes without caring about
which subtype a specific account object is the derived classes.

Design and Implementation Issues

Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Overridable Not Overridable
Implementation: Default Overridable Routine Non-Overridable Routine
Provided
Be sure to inherit Only Implementation: No Default Abstract Overridable Not used (doesn't make sense to
Provided Routine leave a routine undefined and

what you want to inherit

not allow it to be overridden)

A derived class can inherit member routine

interfaces, implementations, or both. An abstract overridable routine means that the derived class inherits the

routine’s interface but not its implementation.

An overridable routine means that the derived class inherits the routine’s
interface and a default implementation and it is allowed to override the
default implementation

A non-overridable routine means that the derived class inherits the
routine’s interface and its default implementation and it is not allowed to
override the routine’s implementation.

Design and Implementation Issues

Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Don’t “override” a non- Move common interfaces, data, Be suspicious of base
overridable member and behavior as high as possible classes of which there is
function in the inheritance tree only one derived class
Be suspicious of classes Avoid deep inheritance Make all data private,
that override a routine trees not protected

and do nothing inside
the derived routine

Design and Implementation Issues

Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Prefer polymorphism to
extensive type checking

C++ Example of a Case Statement That Probably Should Not Be Replaced

by Polymorphism
C++ Example of a Case Statement That Probably Should Be Replaced switch C.ui-Command()). {
by Polymorphism case Command_OpenFile:
openFile();
switch (shape.type) { break:
case Shape Circle: case Command_Print:
shape.DrawCircle(); Print();
break; break;
case Shape_Square: case Command_Save:
shape.DrawSquare(); Save();
break; break;
ire case Command_Exit:
} Shutbown() ;

break:

Design and Implementation Issues

Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Why Are There So Many Rules for Inheritance?

If multiple classes share common data but not behavior, create
a common object that those classes can contain.

If multiple classes share common behavior but not data, derive
them from a common base class that defines the common
routines

If multiple classes share common data and behavior, inherit
from a common base class that defines the common data and
routines.

Inherit when you want the base class to control your interface;
contain when you want to control your interface.

Design and Implementation Issues

Keep the number of routines in a
class as small as possible

Minimize indirect routine calls to
other classes

Initialize all member data in all
constructors, if possible

Prefer deep copies to shallow
copies until proven otherwise

A deep copy of an object is a member-wise
copy of the object’s member data; a
shallow copy typically just points to or
refers to a single reference copy

Member Functions and Data

Disallow implicitly generated
member functions and operators
you don’t want

In general, minimize the extent to
which a class collaborates with
other classes

Minimize the number of
different routines called by a class
One study found that the number of faults
in a class was statistically correlated with

the total number of routines that were
called from within a class

Enforce the singleton property
by using a private constructor

Java Example of Enforcing a Singleton with & Private Constructor

pebine Class maxie |
[/ CORstruciors and Sestructiors

HeTe b e prvans e privane sania() |
T i
}
/ peblic routines
HETE & T DUDSC Foutne 1 o pablic static maxid Setinstance) {
Dt provides e e | return B_inastance;
unoie TN 1 }

/] PrIVaTe members

Je PSR P DrIVATE STATIC Tima) Manid s_IASTANCE = hew MaNIS())
|

}

Reasons to Create a Class

Model real-world objects

Create a class for each real-world object type that your program models

BRASANH

// e

a

b2 ATr

=

i
l"r
._/

S

’... _._.._.

sm-'\i s‘ﬁ%ﬂ.

Reasons to Create a Class

Model abstract objects

An object that isn’t a concrete, real-world object but that provides an abstraction of other concrete objects.

Shape
color

‘.gntkvvai)

stoString()
For example, the classic Shape object. | T
Rectangle and Triangle really exist, but ; 1
Shape is an abstraction of other ~ Rectangle | | Triangle
specific shapes. i:r;t:'th ::"»:z.;!'ut

.tﬁctﬁrca(] ‘ .0gctﬂrca()

+toString() +toString()

Reasons to Create a Class

Reduce complexity

Create a class to hide information so that you won’t need to think about it, no need to know about its internal
workings. Also, to minimize code size and improve maintainability

Reasons to Create a Class

Isolate complexity

Complexity in all forms—complicated algorithms, large data sets, intricate communications protocols, and so
on—is prone to errors

HOW TO BE

SUCCESSFUL

. . WITH THE NEW
If an error does occur, it will be easier

to find if it isn’t spread through the
code but is localized within a class

ALGORITHM
CHANGE

Reasons to Create a Class

Hide implementation
details

Streamline parameter
passing

If you’re passing a parameter among
several routines, that might indicate a
need to factor those routines into a
class that share the parameter as
object data

Limit effects of
changes

Isolate areas that are likely to
change so that the effects of
changes are limited to the scope of
a single class or a few classes

Make central points
of control

It’s a good idea to control each task
in one place

Hide global data

If you need to use global data, you can hide its
implementation details behind a class interface. Working
with global data through access routines provides several
benefits compared to working with global data directly.

Facilitate reusable code

Code put into well-factored classes can be reused in other
programs more easily than the same code embedded in
one larger class

Avoid creating god classes,
all-knowing and all-powerful

If a class spends its time retrieving data from other
classes using Get() and Set() routines (that is,
digging into their business and telling them what
to do), ask whether that functionality might better
be organized into those other classes rather than
into the god class (Riel 1996).

Classes to Avoid

Eliminate irrelevant
classes

If a class consists only of data but no
behavior, ask yourself whether it’s really a
class and consider demoting it so that its
member data just becomes attributes of one
or more other classes.

Avoid classes named after
verbs

A class that has only behavior but no data is
generally not really a class. Consider turning
a class like Databaselnitialization() or
StringBuilder() into a routine on some other
class.

Beyond Classes: Packages

Classes are currently the best way for programmers to achieve modularity. But
modularity is a big topic, and it extends beyond classes.

-4 classes | :--{ myproject |

-4 ‘
:- - { HyCiass Java |
- (o |
S LT

:—-{Ry(lan class]

T

AI

R

ArrayList

LinkedList

Vector

1
|

\

T

PriorityQueue

e
o o
|

L

—

?

at are the right and wrong things?

public class SportsCar extends
public Car myCa: new Car();
public void activateSportMode ()

public void activateComfortMode ()

public static void

new SportsCar();
H
H
" .
a ’
V
()
. yublic class
public class I
. . yublic int enginePower;
public String brand; I ’
. . yublic int engineMaxS: i;
public int product nYear; I ’
: : yrivate String engineType;
public int numberOfCGears; I { gl

public int numberOfSeats;

public void start()
public void stop()

public void changs r()

SUMMAR

Class interfaces should provide a consistent abstraction. Many
problems arise from violating this single principle.

A class interface should hide something—a system interface, a design
decision, or an implementation detail.

Containment is usually preferable to inheritance unless you’re
modeling an “is a” relationship.

Inheritance is a useful tool, but it adds complexity, which is counter to
Software’s Primary Technical Imperative of managing complexity.

Classes are your primary tool for managing complexity. Give their
design as much attention as needed to accomplish that objective.

High Quality Routines

What is a routine?

A routine is an individual method or procedure invocable for a single
purpose. Examples include a function in C++, a method in Java, a
function or sub procedure in Microsoft Visual Basic

What is a high-quality routine? That’s a harder question.

What is a high-quality routine?

C++ Example of a Low-Quality Routine

void Handlestuff(CORP_DATA & fnputRec, int crntQtr, EMP_DATA empRec,
double & estimRevenue, double ytdrRevenue, int screenX, int screeny,
COLOR_TYPE & newColor, COLOR_TYPE & prevColor, StatusType & status,
int expenseType)

{
int 1;
for (1 =0; 1 <100; 9++) {
inputRec.revenue[i] = 0;
inputRec.expense[i] = corpExpense[crntQtr J1[1 1:
}
UpdateCorpDatabase(empRec);
estimRevenue = ytdRevenue * 4.0 / (double) crntQtr;
newcColor = prevcolor;
status = SUCCESS;
if (expenseType == 1) {
for (1 =0; 1 <12; 1i++)
profit[i] = revenue[i] - expense.typell[i]l;
}
else if (expenseType == 2) {
profit[i] = revenue[i] - expense.type2[i]:
}
else if (expenseType == 3)
profit[i] = revenue[i] - expense.type3[i):
}

What is a high-quality routine?

vaid sandlestuff(CORF_DATA & TNPWIREC, INT Ccrmter, IaP_DATA mpRec,

douhiec & estimlevernue, Souble yldieverme, Int sdroesk, Int screeny,
COLOR TYPFE & mewmColor, COLOR TYPE & previolor, StatesType & stales,

I8t expenseType)
i
"t N
for (v = 05 % < 100 1+¢) |
1oputiec. . revenae (1] = O3
feputiec. expenan(1] = corplapense crmoQer 10 ¥);
}
UpdateCorpbatabase! smplec);
CSTIMESveree = yIOREvyewe * 4.0
neeColor = prevcalor)
STATHS = SRS
IF { cxpenseType = 1) {
for (1 = 0; 1 < 82 1)
profitit) = reveruelt)

(S le) cratqer)

cxpense . typeiit]);
)
else 17T { expereType == 2) |
profitiv] = revenue(1)
)

caperse . type2[1):

else 17T { experatyne »» 1)
profiz1] » revesss (1] -~ sxperse.typesf1);

The routine has too many parameters. The upper limit for an
understandable number of parameters is about 7

The routine’s parameters are poorly ordered and are not
documented

The routine has a bad name. HandleStuff () tells you nothing about what the routine does.
The routine isn’t documented.

The routine has a bad layout. The physical organization of the code on the page gives few
hints about its logical organization.

The routine’s input variable, inputRec, is changed. If it’s an input variable, its value should
not be modified

The routine reads and writes global variables—it reads from corpExpense and writes to
profit . It should communicate with other routines more directly than by reading and
writing global variables.

The routine doesn’t have a single purpose. It initializes some variables, writes to a database,
does some calculations—none of which seem to be related to each other in any way. A
routine should have a single, clearly defined purpose.

The routine doesn’t defend itself against bad data. If crntQtr equals 0, the expression
ytdRevenue * 4.0 / (double) crntQtr causes a divide-by-zero error.

The routine uses several magic numbers: 100, 4.0, 12,2 ,and 3.

Some of the routine’s parameters are unused: screenX and screenY are not referenced
within the routine.

One of the routine’s parameters is passed incorrectly: prevColor is labeled as a reference parameter (&) even though it isn’t assigned a value within the routine.

Valid Reasons to Create a Routine

Reduce Complexity

The single most important reason to create a routine is to reduce a program’s complexity. Create
a routine to hide information so that you won’t need to think about it.

Other reasons to create routines:
minimizing code size and improving
maintainability and correctness

But without the abstractive power
of routines, complex programs
would be impossible to manage.

An indication that a routine needs
to be broken out is loop deep
nesting or a conditional

Valid Reasons to Create a Routine

Introduce an intermediate, understandable abstraction

Putting a section of code into a well-named routine is one of the best ways to document its purpose

if (node <> NuULL) then
while (node.next <> NULL) do
node = node.next
leafName = node.name
end while
else
leafName =
end 1f

-

leafName = GetLeafName(node)

Valid Reasons to Create a Routine

Avoid duplicate code

Undoubtedly the most popular reason for creating a routine is to avoid duplicate code.

extern int array al[];
extern int array bl[];

sum a ;
for (int 1 = 1; 14+4)
um a irra 1 (1) ;
average a sum a :
um b c
for (int 1 =3 ; 1)
sum b array bl1i]);

Valid Reasons to Create a Routine

Hide Sequences

It’s a good idea to hide the order in which events happen to be processed

For example, a sequence might be
found when you have two lines of
code that read the top of a stack and

decrement a stackTopvariable. Hiding that assumption will be better than
but those two lines of code into 2 baking it into code from one end of the
PopStack() routine to hide the System to the other.

assumption about the order in
which the two operations must be
performed

Valid Reasons to Create a Routine

Hide Pointer Operations

Pointer operations tend to be hard to read and error prone. By isolating them in routines, you can
concentrate on the intent of the operation rather than on the mechanics of pointer manipulation

if (node <> NuULL) then

if the operations are done in only while (node.next <> NULL) do

one place, you can be more certain

that the code is correct. If you find a node = node.next
better data type than pointers, you leafName = node.name
can change the program without end while
traumatizing the code that would else
have used the pointers.

leafName = ""

end 1 f

Valid Reasons to Create a Routine

Improve portability

Use of routines isolates nonportable capabilities, explicitly identifying
and isolating future portability work.

Nonportable capabilities include nonstandard language features,
hardware dependencies, operating-system dependencies, and so on.

Valid Reasons to Create a Routine

Simplify Complicated Boolean Tests

Understanding complicated boolean tests in detail is rarely necessary for understanding program flow.

Putting such a test into a function Giving the test a function of its own emphasizes
makes the code more readable

because (1) the details of the test its 5|gn|f|cance-. It encourages extra effor.t to.
are out of the way and (2) a make the details of the test readable inside its
descriptive function name function.

summarizes the purpose of the test.

Valid Reasons to Create a Routine

Improve Performance

You can optimize the code in one place instead of in several places.

Centralizing code into a routine
means that a single optimization
benefits all the code that uses that

Having code in one place makes it practical to
recode the routine with a more efficient

routine, whether it uses it directly or algorithm or in a faster, more efficient

indirectly.

language.

Operations That Seem Too Simple to Put Into Routines

Constructing a whole routine to contain two or three lines of code
might seem like overkill, but experience shows how helpful a good
small routine can be.

Small routines offer several advantages. One is that they improve readability.

Pseudocode Example of a Function Call to a Calculation Function

points = DeviceUnitsToPoints(deviceUnits)

Pseudocode Example of a Calculation
points = deviceUnits * (POINTS_PER_INCH / DeviceuUnitsPerInch()) . .
Pseudocode Example of a Calculation Converted to a Function

Function DeviceUnitsToPoints (deviceUnits Integer): Integer
DeviceUnitsToPoints = deviceUnits *
(POINTS_PER_INCH / DeviceunitsPerinch())
End Function

Operations That Seem Too Simple to Put Into Routines

Pseudocode Example of a Calculation That Expands Under Maintenance

Function DeviceUnitsToPoints(deviceUnits: Integer) Integer;
if (DeviceUnitsPerInch() < 0)
DeviceUnitsToPoints « deviceUnits *
(POINTS_PER_INCH / DeviceunitsPeriInch())
else
DeviceUnitsToPoints = 0
end if
End Function

If that original line of code had still been in a dozen places, the test would have been repeated a dozen
times, for a total of 36 new lines of code. A simple routine reduced the 36 new lines to 3.

Design at the Routine Level

Cohesion Coupling

how closely the operations the relationships between
in a routine are related functions

Design at the Routine Level: Cohesion

Some programmers prefer the term “strength”; how strongly related are the operations in a routine

Cosine()

A function like Cosine() is perfectly cohesive

because the whole routine is dedicated to
performing one function.

One study of 450 routines found that 50
percent of the highly cohesive routines

were fault free, whereas only 18 percent
of routines with low cohesion were fault

free
(Card, Church, and Agresti1986)

CosineAndTan()

A function like CosineAndTan() has lower cohesion
because it tries to do more than one thing. The
goal is to have each routine do one thing well and
not do anything else.

Another study of a different 450 routines (which is just
an unusual coincidence) found that routines with the
highest coupling-to-cohesion ratios had 7 times as
many errors as those with the lowest coupling-to-

cohesion ratios and were 20 times as costly to fix
(Selby and Basili1991)

Design at the Routine Level: Desired Cohesion

Functional Cohesion

Functional cohesion is the strongest and best kind of cohesion,
occurring when a routine performs one and only one operation

 Compute Cosine of Angle

* Verify Alphabetic Syntax

* Read Transaction Record

* Determine Customer Mortgage Repayment
 Compute Point of Impact of Missile

e Calculate Net Employee Salary

* Assign Seat to Airline Customer

Design at the Routine Level: Acceptable Cohesion

Sequential Cohesion

Sequential cohesion exists when a routine contains operations that must be performed in a specific order, that
share data from step to step, and that don’t make up a complete function when done together.

For example, given a birth date, calculates an employee’s age and time to retirement.

If the routine calculates the age and then uses that result to calculate the employee’s time to retirement, it has
sequential cohesion.

Design at the Routine Level: Acceptable Cohesion

Communicational Cohesion

Communicational cohesion occurs when operations in a routine make use of
related in any other way.

the same data and aren’t

For example, suppose you wrote a function to query a database to get the name and

office number for an employee in your company.

It may make sense for your application, but the only common point between the two operations is that the data

comes from the same employee record.

a. Find
b. Find
c. Finc
d. Finc

| Title of Book
| Price of Book
Publisher of Book

Author of Book

Design at the Routine Level: Acceptable Cohesion
Temporal Cohesion

Temporal cohesion occurs when operations are combined into a routine because they are all done at the same time.

Some programmers consider temporal cohesion to be unacceptable because it’s
sometimes associated with bad programming practices such as having a mixture of
dissimilar code in a Startup() routine.

To avoid this problem, think of temporal a. Put out Milk Bottles
routines as organizers of other events. b. Put out Cat
C

have the temporally cohesive routine call other routines to
. Turn off TV

perform specific activities rather than performing the operations

directly itself. But this raises the issue of choosing a name that d B l -1—- l
describes the routine at the right level of abstraction . rusn eet 1

It will be clear that the point of the routine is to orchestrate activities rather than to do
them directly.

Design at the Routine Level: Unacceptable Cohesion

Procedural Cohesion

Procedural cohesion occurs when operations in a routine are done in a specified order.

The routine has procedural cohesion because it puts a set of operations in a specified
order and the operations don’t need to be combined for any other reason.

* Clean Utensils from Previous Meal
* Prepare Chicken for Roasting

To achieve better c.ohesolon, put. « Make Phone Call
the separate operations into their e Take Shower
own routines. e Chop Vegetables

 Set Table

Design at the Routine Level: Unacceptable Cohesion
Logical Cohesion

Logical cohesion occurs when several operations are stuffed into the same routine and one of the
operations is selected by a control flag that’s passed in.

The control flow or “logic” of the routine is the only thing that ties the operations
together—they’re all in a big if statement or case statement together.

public void sample(int flag) { .
switch (flag) { do same thing

case ON:

// bunch of on stuff /r
break;

case OFF:
// bunch of off stuff
break;
tulips

case CLOSE:
// bunch of close stuff
break;

case COLOR:
// bunch of color stuff
break;

I plant
strawberry

Design at the Routine Level: Unacceptable Cohesion

Logical Cohesion

Logical cohesion occurs when several operations are stuffed into the same routine and one of the
operations is selected by a control flag that’s passed in.

It’s usually all right, to create a logically cohesive routine if its code consists solely of a
series of if or case statements and calls to other routines.

if the routine’s only function is to dispatch commands and it doesn’t do any of the processing itself, that’s usually a
good design.

The technical term for this kind of routine is “event handler” An event
handler is often used in interactive environments such as the Windows
and Linux GUI environments.

Design at the Routine Level: Unacceptable Cohesion
Coincidental Cohesion

Coincidental cohesion occurs when the operations in a routine have no discernible relationship to each other

It’s hard to convert coincidental cohesion to any better kind of cohesion—you usually
need to do a deeper redesign and reimplementation

vold sandleastuff(CORF_DATA & TNPWIREC, IAT CcrmoRer, P _DATA mmpRec,
dosiic & estinfevernue, Souble yldieverme, 1Nt sdreesx, Intl screeny,
COLOR_TYPFE & mewColor, COLOR TYPL & previolor, StatesType & stales,

I8t expenseType)

St * Fix Car
for (v = 05 % < 100; 1++) {
1eputiec. revense[1] = 0; PY Bake Cake

1eputiec. . expenan(1] = corplapense crmo@er 10 1);

: Walk Dog

UpdateCorptatabase! smplec)
ST IMtvenue = yIORevenwe * 4.0 / (o le) cragur)

nescwlor = prevcolor * Fill our Astronaut-Application Form
EE aywmtios e 4)) T * Get out of Bed
) profitit) = reveruelt] « cxpense.typeift]); ° GO the the MOVieS

else 17 { expereType == 2) |
profitis] = revesue[1) caperse . type2[1):
)

else 17 { experatyne »» 1)
profiz1] = revesss (1] - sxpense.typesf1);
)

Design at the Routine Level: Bad Coupling

Tight Coupling

Large dependence on the structure of one module by another.

Design at the Routine Level: Good Coupling

Loose Coupling

Modules with loose coupling are more independent and easier to maintain

Design at the Routine Level: Worst Coupling

Content Coupling

A module changes another module’s data

Design at the Routine Level: Not Worst Coupling

Common Coupling

This occurs when all modules reference the same global data structure

Design at the Routine Level: Not Worst Coupling

External Coupling

Modules communicate through an external medium, such as files

Design at the Routine Level: Acceptable Coupling

Control Coupling

Two modules exhibit control coupling if one ("module A") passes to the other (" module B") a piece of
information that is intended to control the internal logic of the other.

Design at the Routine Level: Acceptable Coupling

Stamp Coupling

Two modules (A" and ~'B") exhibit stamp coupling if one passes directly to the other a “composite' piece of
data-that is, a piece of data with meaningful internal structure -such as a record (or structure), array, or
(pointer to) a list or tree.

head

Object Object Object

next ;- next . next - @

tail

Design at the Routine Level: Ideal Coupling

Modules A and B have the lowest possible level of coupling -no
coupling at all -if they have no direct communication and are also
not tied together' by shared access to the same global data area
or external device.

it implies that A and B be implemented, tested, and maintained (almost) completely independently, neither will affect
the behavior of the other

Good Routine Names

A good name for a routine clearly describes everything the routine does

Describe everything the routine does

describe all the outputs and side effects. If a routine computes report
totals and opens an output file, ComputeReportTotals() is not an adequate
name for the routine. ComputeReportTotalsAndOpenOutputFile() is an
adequate name but is too long and silly.

Don’t differentiate routine names solely by number

To name a function, use a description of the return value

describe all the outputs and side effects. If a routine computes report
totals and opens an output file, ComputeReportTotals() is not an adequate
name for the routine. ComputeReportTotalsAndOpenOutputFile() is an
adequate name but is too long and silly.

Establish conventions for common operations

In some systems, it’s important to distinguish among different kinds of
operations. A naming convention is often the easiest and most reliable
way of indicating these distinctions

Avoid meaningless, vague, or wishy washy verbs

Some verbs are elastic, stretched to cover just about any meaning. Routine
names like HandleCalculation() , PerformServices() , OutputUser(),
Processinput(), and DealWithOutput() don’t tell you what the routines do.

Make names of routines as long as necessary

To name a procedure, use a strong verb followed by an object

A procedure with functional cohesion usually performs an operation on an
object. The name should reflect what the procedure does, and an
operation on an object implies a verb-plus object name.

Use opposites precisely

add/remove increment/decrement open/close
begin/end insert/delete show/hide
create/destroy lock/unlock source/target
first/last min/max start/stop
get/put next/previous up/down

get/set old/new

How Long Can a Routine Be?

The theoretical best maximum length is often described as one
screen or one or two pages of program listing, approximately
50 to 150 lines. In this spirit, IBM once limited routines to 50
lines, and TRW limited them to two pages (mccabe 1976)

A large percentage of routines in object-oriented programs will be accessor routines, which will be very short. From
time to time, a complex algorithm will lead to a longer routine, and in those circumstances, the routine should be
allowed to grow organically up to 100-200 lines (A line is a non comment, nonblank line of source code).

How to Use Routine Parameters?

Interfaces between routines are some of the most error-prone areas of a program

One often-cited study by Basiliand Perricone (1984) found that
39 percent of all errors were internal interface errors—errors in
communication between routines.

How to Use Routine Parameters?

Put parameters in input-modify-output order

Instead of ordering parameters randomly or alphabetically, list the parameters that are
input-only first, input-and-output second, and output-only third

Ada Example of Parameters in Input-Modify-Output Order

‘ procedure InvertMmatrix(
Ada uses in and out key- F——e originalMatrix: in Matrix;
words to make input and resultMatrix: out Matrix
output parameters clear. ,),

procedure ChangeSentenceCase(
desiredCase: in StringCase;
sentence: 1n out Sentence

),

procedure PrintPageNumber(
pageNumber: in Integer;
status: out StatusType
)

How to Use Routine Parameters?

If several routines use similar parameters, put the similar parameters in a consistent order

The order of routine parameters can be a mnemonic, and inconsistent order can make
parameters hard to remember.

strncpy <cstring>

char * strncpy (char * destination, const char * source, size t num);
Copy characters from string

Copies the first num characters of source to destination. If the end of the source C string (which is signaled by a null-
character) is found before num characters have been copled, destination is padded with zeros until a total of num
characters have been written to it.

No null-character is implicitly appended at the end of destination if source is longer than num. Thus, in this case,
destination shall not be considered a null terminated C string (reading it as such would overflow).

destination and source shall not overlap (see memmove for a safer alternative when overlapping).

... Parameters

destination
Pointer to the destination array where the content is to be copied.

source
C string to be copied.

num
Maximum number of characters to be copied from sowrce.
size_t is an unsigned integral type.

memcpy <cstring>
void * memcpy (void * destination, const void * source, size_t num);
Copy block of memory

Copies the values of num bytes from the location pointed to by source directly to the memory block pointed to by
destination.

The underlying type of the objects pointed to by both the source and destination pointers are irrelevant for this
function; The result is a binary copy of the data.

The function does not check for any terminating null character in source - it always copies exactly num bytes.
To avoid overflows, the size of the arrays pointed to by both the destination and source parameters, shall be at least

num bytes, and should not overlap (for overlapping memory blocks, memmove is a safer approach).

... Parameters

destination
Pointer to the destination array where the content is to be copied, type-casted to a pointer of type void»,

source
Pointer to the source of data to be copied, type-casted to a pointer of type const voide.

num
Number of bytes to copy.
size_t is an unsigned integral type.

How to Use Routine Parameters?

Use all the parameters

If you pass a parameter to a routine, use it. If you aren’t using it, remove the parameter
from the routine interface.

Unused parameters are correlated with an increased error rate. In
one study, 46 percent of routines with no unused variables had
no errors, and only 17 to 29 percent of routines with more than
one unreferenced variable had no errors (Card, Church, and Agresti1986).

How to Use Routine Parameters?

Put status or error variables last

By convention, status variables and variables that indicate an
error has occurred go last in the parameter list. They are
incidental to the main purpose of the routine, and they are
output-only parameters, so it’s a sensible convention.

How to Use Routine Parameters?

Don’t use routine parameters as working variables

It’s dangerous to use the parameters passed to a routine as working variables. Use local
variables instead.

Java Example of Improper Use of Input Parameters

int Sample(int inputval) {
inputval = inputval * CurrentMultiplier(inputval);
inputval = inputval + CurrentAdder(inputval);

At this point, inputVal no |—s return inputval;
longer contains the value }
that was input.

Java Example of Good Use of Input Parameters

int Sample(int inputval) {
int workingval = inputval;
workingval « workingval * CurrentMultiplier(workingval);
workingval = workingval + CurrentAdder(workingval);

N you need 1o use the alq:i',__’

nal value of inputVal here Tk

or somewhere else, it’s still return workingval;
| available. | }

How to Use Routine Parameters?

Document interface assumptions about parameters

If you assume the data being passed to your routine has certain characteristics, document the assumptions as
you make them. Even better than commenting your assumptions, use assertions to put them into code

Whether parameters are Units of numeric Meanings of status codes and Ranges of expected
input-only, modified, or parameters (inches, error values if enumerated values
output-only feet, meters, and so on) types aren’t used

Specific values that should
never appear

How to Use Routine Parameters?

Limit the number of a routine’s parameters to about seven

Seven is a magic number for people’s comprehension

If you find yourself consistently passing more than a few arguments, the coupling
among your routines is too tight. Design the routine or group of routines to reduce the
coupling. If you are passing the same data to many different routines, group the
routines into a class and treat the frequently used data as class data.

How to Use Routine Parameters?

Make sure actual parameters match formal parameters

Formal parameters, also known as “dummy parameters,” are the variables declared in a routine
definition. Actual parameters are the variables, constants, or expressions used in the actual routine calls.

A common mistake is to put the wrong
type of variable in a routine call

SUMMAR

The most important reason for creating a routine is to improve the
intellectual manageability of a program, and you can create a routine for
many other good reasons. Saving space is a minor reason; improved
readability, reliability, and modifiability are better reasons.

Sometimes the operation that most benefits from being put into a routine
of its own is a simple one.

You can classify routines into various kinds of cohesion, but you can make
most routines functionally cohesive, which is best.

The name of a routine is an indication of its quality. If the name is bad and
it’s accurate, the routine might be poorly designed. If the name is bad and
it’s inaccurate, it’s not telling you what the program does. Either way, a
bad name means that the program needs to be changed.

Defensive Programming

The idea is based on defensive driving. In defensive driving, you adopt the mind-set that you’re never sure what
the other drivers are going to do. That way, you make sure that if they do something dangerous you won’t be
hurt. You take responsibility for protecting yourself even when it might be the other driver’s fault.

Defensive Programming

5 ’ - - o~

> . ‘.ﬂ . :.'-\ < "

- — -

S —— - . p
—_— e

— =

2 e T

- -
— e

—
e I

Part of the Interstate-90 floating bridge in Seattle sank during a storm
because the flotation tanks were left uncovered, they filled with water, and
the bridge became too heavy to float. During construction, protecting

yourself against the small stuff matters more than you might think.

Defensive Programming

// Fig. 13.1: DivideByZeroNoExceptionHandling.java
// An application that attempts to divide by zero.
import java.util.Scanner;

public class DivideByZeroNoExceptionHandling

// demonstrates throwing an exception when a divide-by-zero occurs
public static int quotient(int numerator, int denominator)

return numerator / denominator; // possible division by zero
} // end method quotient

public static void main(String args[])

Scanner scanner = new Scanner(System.in); // scanner for input

§ystem.out.print("Please enter an integer numerator: ");
int numerator = scanner.nextInt(); .
System.out.print("Please enter an integer denominator: ");

int denominator = scanner.nextInt();

int result = quotient(numerator, denominator);
System.out.printf(
"\nResult: ¥d / ¥d = %¥d\n", numerator, denominator, result);
} // end main
} // end class DivideByZeroNoExceptionHandling

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Please enter an integer numerator: 100
Please enter an integer denominator: 0
Exception in thread "main" java.lang.ArithmeticException: / by zero
at DivideByZeroNoExceptionHandling.quotient(
DivideByZeroNoExceptionHandling.java:10)
at DivideByZeroNoExceptionHandling.main(
DivideByZeroNoExceptionHandling.java:22)

Please enter an integer numerator: 100
Please enter an integer denominator: hello
Exception in thread "main" java.util.InputMismatchException
at java.util.Scanner.throwFor(unknown Source)
at java.util.Scanner.next(Unknown Source)
at java.util.Scanner.nextInt(Unknown Source)
at java.util.Scanner.nextInt(Unknown Source)
at DivideByZeroNoExceptionHandling.main(
DivideByZeroNoExceptionHandling.java:20)

Defensive Programming

// Fig. 13.2: DivideByZerowithExceptionHandling.java

// An exception-handling example that checks for divide-by-zero.
import java.util.Inputnisnatch&xception;

import java.util.Scanner;

?ublic class DivideByZerowithExceptionHandling

// demonstrates throwing an exception when a divide-by-zero occurs
public static int quotient(int numerator, int denominator)
throws ArithmeticException

return numerator / denominator; // possible division by zero
} // end method quotient

public static void main(String args([])

Scanner scanner = new Scanner(System.in); // scanner for input
boolean continueLoop = true; // determines if more input is needed

do
{

try // read two numbers and calculate quotient

System.out.print("Please enter an integer numerator: ");
int numerator = scanner.nextint();

System.out.print("Please enter an integer denominator: ");
int denominator = scanner.nextInt();

int result = quotient(numerator, denominator);
System.out.printf("\nResult: ¥d / ¥d = %d\n", numerator,
denominator, result);
continueLoop = false; // input successful; end looping
} // end try
iatCh (InputMismatchException inputMismatchException)

System.err.printf("\nException: %¥s\n",
inputMismatchException);
scanner.nextLine(); // discard input so user can try again
System.out.printin(
"You must enter integers. Please try again.\n");
} // end catch
Eatch (ArithmeticException arithmeticException)

System.err.printf("\nexception: ¥s\n", arithmeticException);
System.out.printin(
"Zero is an invalid denominator. Please try again.\n");
} // end catch
} while (continueLoop); // end do...while
} // end main
} // end class DivideByZerowithExceptionHandling

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Please enter an integer numerator: 100
Please enter an integer denominator: 0

Exception: java.lang.ArithmeticException: / by zero
Zero is an invalid denominator. Please try again.

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Please enter an integer numerator: 100
Please enter an integer denominator: hello

Exception: java.util.InputMismatchException
You must enter integers. Please try again.

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Protecting Your Program from Invalid Inputs

In school you might have heard the expression, “Garbage in, garbage out.” That expression is essentially
software development’s version of caveat emptor: let the user beware.

For production software, garbage in, garbage out
isn’t good enough. A good program never puts
out garbage, regardless of what it takes in.

Check the values of all data Check the values of all routine Decide how to handle bad
from external sources input parameters inputs

Assertions

An assertion is code that’s used during development—usually a routine or macro—that allows a
program to check itself as it runs

When an assertion is true, that means everything is
operating as expected. When it’s false, that means it has
detected an unexpected error in the code.

Assertions are especially useful in large, complicated programs and in
high-reliability programs. They enable programmers to more quickly
flush out mismatched interface assumptions, errors that creep in
when code is modified, and so on.

Assertions

An assertion is code that’s used during development—usually a routine or macro—that allows a
program to check itself as it runs

An assertion usually takes two arguments: a Boolean expression that describes
the assumption that’s supposed to be true, and a message to display if it isn’t.

, - -~ - Enter a number between 0 and 10: 5
F1g. 13.9: AssertTest.java You entered 5

/ Demonstrates the assert statement
import java.util.Scanner;

public class AssertTest

i i 3 1 3 Enter a number between 0 and 10: 50
OUbh(static void ma“"(Strmg args[]) Exception in thread "main" java.lang.Assertiontrror: bad number: 50
{ at AssertTest.main(AssertTest.java:15)

Scanner input = new Scanner(System.in);

System.out.print("Enter a number between 0 and 10: ");

int number = input.nextint();

// assert that the absolute value is >= 0

assert (number >= 0 & number <= 10) : "bad number: " + number;

System.out.printf("yvou entered %d\n", number);
} // end main
} // end class AssertTest

Assertions

An assertion is code that’s used during development—usually a routine or macro—that allows a
program to check itself as it runs

You use assertions primarily for debugging and identifying logic errors in an
application. They are comment-like code

You must explicitly enable assertions when executing a program, because they
reduce performance and are unnecessary for the program’s user.

Users should not encounter any Assertion Errors through normal execution of a
properly written program. Such errors should only indicate bugs in the
implementation. E.g., Debug mode vs. Release mode

Assertions

An assertion is code that’s used during development—usually a routine or macro—that allows a
program to check itself as it runs

That an input parameter’s value falls within its expected range (or an output
parameter’s value does)

That a file or stream is open (or closed) when a routine begins executing (or when it
ends executing)

That a file or stream is at the beginning (or end) when a routine begins executing (or
when it ends executing)

That a file or stream is open for read-only, write-only, or both read and write

That the value of an input-only variable is not changed by a routine

That a pointer is non-null

That an array or other container passed into a routine can contain at least X number of
data elements

That a table has been initialized to contain real values

That a container is empty (or full) when a routine begins executing (or when it finishes)
That the results from a highly optimized, complicated routine match the results from a
slower but clearly written routine

Assertions: Guidelines for Using Assertions

Use error-handling code for conditions you expect to occur;
use assertions for conditions that should never occur

Assertions check for conditions that should never occur. Error-handling code
checks for off-nominal circumstances that might not occur very often, but that
have been anticipated by the programmer who wrote the code and that need
to be handled by the production code. Error handling typically checks for bad

input data; assertions check for bugs in the code.

Assertions: Guidelines for Using Assertions

Avoid putting executable code into assertions

Putting code into an assertion raises the possibility that the compiler will eliminate the code
when you turn off the assertions.

Visual Basic Example of a Dangerous Use of an Assertion
Debug.Assert(PerformAction()) ' Couldn't perform action

Visual Basic Example of a Safe Use of an Assertion

actionPerformed = PerformAction()

Debug.Assert(actionPerformed) ' Couldn't perform action

Assertions: Guidelines for Using Assertions

Do not use assertions for argument checking in public
methods

Argument checking is typically part of the published specifications (or contract) of a method, and
these specifications must be obeyed whether assertions are enabled or disabled

Erroneous arguments should result in an appropriate
runtime exception (such as lllegalArgumentException,
IndexOutOfBoundsException, or NullPointerException)

private

E.nforc‘e. Spé;ifiéa pArecl‘:onditi‘on“in public method // Confirm adherence to precondition in nonpublic method

Assertions: Guidelines for Using Assertions

Use Assertions for Internal Invariants

An invariant is a condition that can be relied upon to be true during execution of a program, or
during some portion of it. It is a logical assertion that is held to always be true during a certain
phase of execution. For example, a loop invariant is a condition that is true at the beginning and
end of every execution of a loop.

1f (1 % 3 1) e

clse { // We know (i % 3 == 2) S

assert 1 % 3 == .

Assertions: Guidelines for Using Assertions

Use Assertions for Internal Invariants

An invariant is a condition that can be relied upon to be true during execution of a program, or
during some portion of it. It is a logical assertion that is held to always be true during a certain
phase of execution. For example, a loop invariant is a condition that is true at the beginning and
end of every execution of a loop.

Assumption: the suit variable will

have one of only four values. To test
this assumption, you should add the break:
following default case:

default: ..
assert false : suit; break:

Assertions: Guidelines for Using Assertions

Use Assertions for Control Flow Invariants

place an assertion at any location you assume will not be reached

assert false; // Execution should never reach this point!

Assertions: Guidelines for Using Assertions

Use assertions to document and verify preconditions and postconditions

Visual Basic Example of Using Assertions to Document Preconditions and

Preconditions are the properties that the client Patonditons
code of a routine or class promises will be true Private Function Velocity (
. . . . Byval latitude As Single,
before it calls the routine or instantiates the Byval longitude As Single,
. .. . P Byval elevation As Single
object. Preconditions are the client code’s) As Single
obligations to the code it calls. e

Debug.Assert (-90 <= latitude And latitude <= 90)
Debug.Assert (0 <= longitude And longitude < 360)

Postconditions are the properties that the Debug.Assert (-500 <= elevation And elevation <= 75000)
routine or class promises will be true when it
concludes executing. Postconditions are the R
routine’s or class’s obligations to the code that Debug.Assert (0 <= returnvelocity And returnvelocity <= 600)
uses it. ' return value

velocity = returnvelocity
End Function

If the variables latitude, longitude, and elevation
were coming from an external source, invalid
values should be checked and handled by error-
handling code rather than by assertions.

Assertions: Guidelines for Using Assertions

For highly robust code, assert and then handle the error anyway

Visual Basic Example of Using Assertions to Document Preconditions and
Postconditions
Private Function Velocity (_

ByRef latitude As Single, _

ByRef longitude As Single, _

ByRef elevation As Single _

) As Single

" Preconditions
Here Is the assertion code. } ">[Debuo.Assert { 90 <= latitude And latitude <= 90)

Debug.Assert (0 <« longitude And longitude < 360)
Debug.Assert (-500 <= elevation And elevation <= 75000)

" Sanitize input data. values should be within the ranges asserted above,
*but if a value is not within its valid range, it will be changed to the
! ' closest legal value
Hereis the code that handles-—e | If (latitude < -90) Then
bad input data at run time latitude = -90
x Elself (latitude > 90) Then
latitude =« 90
End If
If (longitude < 0) Then
longitude = 0
Elself (Jongitude > 360) Then

Error-Handling Techniques

Return a neutral value

Sometimes the best response to bad data is to continue operating and simply
return a value that’s known to be harmless.

A numeric computation might return O.

A string operation might return an empty string, or a pointer operation might
return an empty pointer.

A drawing routine that gets a bad input value for color in a video game might
use the default background or foreground color.

Error-Handling Techniques

Substitute the next piece of valid data

When processing a stream of data, some circumstances call for simply returning

the next valid data.

If you're reading records from a database
and encounter a corrupted record, you
might simply continue reading until you
find a valid record.

If you’re taking readings from a
thermometer 100 times per second and
you don’t get a valid reading one time, you
might simply wait another 1/100th of a

second and take the next reading.

Error-Handling Techniques

Return the same answer as the previous time

o
>

\

|

Error-Handling Techniques

Substitute the closest legal value

In some cases, you might choose to return the closest legal value. This is often a
reasonable approach when taking readings from a calibrated instrument

The thermometer might be calibrated Cars use this approach to error handling
between 0 and 100 degrees Celsius, for whenever going back. Since a

example. If you detect a reading less than speedometer doesn’t show negative

0, you can substitute 0, which is the closest speeds, when it simply shows a speed of
legal value. O—the closest legal value.

Error-Handling Techniques

Log a warning message to a file

When bad data is detected, you might choose to log a warning message to a
file and then continue on.

This approach can be used in conjunction
with other techniques like substituting the
closest legal value or substituting the next
piece of valid data.

If you use a log, consider whether you can
safely make it publicly available or whether
you need to encrypt it or protect it some
other way.

Error-Handling Techniques

Return an Error Code

You could decide that only certain parts of a system will handle errors. Other
parts will not handle errors locally; they will simply report that an error has
been detected and trust that some other routine higher up in the calling
hierarchy will handle the error.

m Set the value of a status variable

m Return status as the function’s return value

m Throw an exception by using the language’s built-in
exception mechanism

Call an error-processing routine/object

Centralize error handling in a global error-handling routine or error-handling object.

Error-Handling Techniques

Display an error message wherever the error is encountered

This approach minimizes error-handling overhead; however, it does have the potential to spread
user interface messages through the entire application-how to separate Ul. Tight coupling

Beware of telling a potential attacker of the system
too much. Attackers sometimes use error messages to
discover how to attack a system.

Error-Handling Techniques
Shutdown

Some systems shut down whenever they detect an error. This approach is useful
in safety-critical applications.

Error-Handling Techniques: Correctness vs. Robustness

Correctness means never returning an inaccurate result;
returning no result is better than returning an inaccurate result.

Robustness means always trying to do something that will allow
the software to keep operating, even if that leads to results that
are inaccurate sometimes.

Safety-critical applications tend to favor Consumer applications tend to favor robustness
correctness to robustness. It is better to return no to correctness. Any result whatsoever is usually
result than to return a wrong result. e.g. the better than the software shutting down.

radiation machine

Exceptions

An exception is an event, which occurs during the execution of a program, that
disrupts the normal flow of the program’s instructions.

If code in one routine encounters an unexpected condition that it doesn’t
know how to handle, it throws an exception, essentially throwing up its
hands and yelling, “l don’t know what to do about this—I sure hope
somebody else knows how to handle it!”

Code that has no sense of the context of an error can return control to other parts of the system
that might have a better ability to interpret the error and do something useful about it.

disrupts the normal flow of the program's instructions.

Exceptions

An exception is an event, which occurs during the execution of a program, that

Exception
Attribute C++ Java Visual Basic
Try-catch support yes yes yes
Try-catch-finally no yes yes
support
What can be Exception object or Exception object or Exception object or
thrown object derived from object derived from object derived from
Exception class; object Exception class Exception class
pointer; object refer-
ence; data type like
string or int
Effectof uncaught Invokes std::unex- Terminatesthread Terminates
exception pected(), which by of execution if program
default invokes exception is a
std:terminate(), “checked excep-
which by default tion"; no effect if
invokes abort() exception is a
“runtime
exception”
Exceptionsthrown No Yes No
must be defined
in class interface
Exceptionscaught No Yes No
must be defined

in class interface

N

e

AW TEmor

Lrroe
?
TheeadDeath

|
Asitheretic Laception

]

Exceptions

Use exceptions to notify other parts of the program about
errors that should not be ignored

The benefit of exceptions is their ability to signal error conditions in such a way that they
cannot be ignored (Meyers 1996)

Other approaches to handling errors create the possibility that
an error condition can propagate through a code base
undetected. Exceptions eliminate that possibility.

Exceptions

Throw an exception only for conditions that are truly
exceptional

Exceptions should be reserved for conditions that are truly exceptional—in other words, for
conditions that cannot be addressed by other coding practices

Exceptions represent a tradeoff between a powerful way to
handle unexpected conditions on the one hand and increased
complexity on the other.

Exceptions

Don’t use an exception to pass the buck

If an error condition can be handled locally, handle it locally.
Don’t throw an uncaught exception in a section of code if you
can handle the error locally.

Avoid throwing exceptions in constructors and destructors
unless you catch them in the same place

The rules for how exceptions are processed become very complicated very quickly when
exceptions are thrown in constructors and destructors.

Exceptions

Throw exceptions at the right level of abstraction

A routine should present a consistent abstraction in its interface, and so should a class. The
exceptions thrown are part of the routine interface, just like specific data types are.

of Abstraction
class employee {

l Bad Java Example of a Class that Throws an Exception at an Inconsistent Level
A4 - L

CODING
HORROR

Here is the declaration of the}——s= public Taxid GetTaxid() throws EOFException {
exception that's at an incon-
sistent level of abstraction. }

}

Good Java Example of a Class that Throws an Exception at a Consistent Level
of Abstraction
class Employee {

Here is the declaration of —— public TaxId GetTaxId() throws EmployeeDataNotAvailable {
the exception that contrib-

utes 1o a consistent leved }

of abstraction.

Exceptions

Include in the exception message all information that led
to the exception

Be sure the message contains the information needed to understand why the exception was thrown.

If the exception was thrown because of an array index error, be
sure the exception message includes the upper and lower array
limits and the value of the illegal index.

Exceptions
Avoid empty catch blocks

Either the code within the try block is wrong because it raises an exception for no reason, or the
code within the catch block is wrong because it doesn’t handle a valid exception.

Bad Java Example of Ignoring an Exception Good Java Example of Ignoring an Exception
try {
-~

“CODING // lots of code // lots of code
HORROR

} catch (AnException exception) {
LogError("Unexpected exception”);

}

} catch (AnException exception) {
}

Know the exceptions your library code throws

If you’re working in a language that doesn’t require a routine or class to define the exceptions
it throws, be sure you know what exceptions are thrown by any library code you use.

Exceptions

Consider building a centralized exception reporter

Exceptions provide the means to separate the details of what to do when something out of the
ordinary. Error detection, reporting, and handling often lead to confusing spaghetti code

readFile {
open the file;

determine its size;

allocate that much memory;,

read the file into memory;,

close the file;

errorCoc

leType readFile {

initialize errorCode

open the file;

if (theFilelsOpen) {
determine the length of the file;
if (gotTheFileLength) |

allocate that much memory;,

if (gotEnoughMemory) |

read the file into memory;,

f (readfFailed) |

close the file;

if (theFileDidntClose && errorCode

readFile |

try {
open the file;
determine its size;
allocate that much memory;,
read the file into memory;,
close the file;
} catch (fileOpenFailed)
doSomething,
} catch (sizeDeterminationFail
doSomething;
} catch (memoryAllocationFailed)
doSomething;,
} catch (readFailed) {
doSomething;,
} catch (fileCloseFailed) ({

doSomething;

ed)

{

{

Exceptions

Consider building a centralized exception reporter

Exceptions provide the means to separate the details of what to do when something out of the
ordinary. Error detection, reporting, and handling often lead to confusing spaghetti code

Visual Basic Example of a Centralized Exception Reportet, Part 1 Visual Basic Example of a Centralized Exception Reporter, Part 2

Sub Reportixception(_ Try
syval classvame, _

Byval thistxception As Exceptiom _ catch exceptionObject As Exception

Reportexception(CLASS_NAME, exceptionObject)

End Try
Dim message As String

Dim caption As string

sessage = “Ixception: T & thistxception. message & .7 & ControlChars.CrLf &
“Class: " & classvame & Comtrolchars.Crif &
“Routime: “ & thisException.YargetSite . Name & ControlChars.Crif

caption « “exception”

Messagetox . show(message, Caption, MesSSAQeBOABLTIONS.OK, _
MessagesoxIcon.Exclamation)

End S

Grnphical

User Irgerface

-..-..‘
sansnnst

'......l..l...‘

_ornmrand
Lase Dracriace

.'...'.........‘
- Real -coree
E Data Feed

'..-.....-...-‘

External

Rl E

'...l..l.....l‘

Onher external 3
objects .

L

.

Dua aeve s

assumed 10 b Qny

andd Eeraged

Barricade Your Program to Contain the Damage Caused by Errors

Barricades are a damage-containment strategy. The reason is similar to that for having isolated compartments in

the hull of a ship.

Insernal noemal
Chas | Class 2
[reens S 1L -y '"’f"ul &’»lf'r‘-d
s Vahduion ; Clhass S Class 4
Chsl |
Ryl '
Interral e mad
R s a’s’ <1 Clas 5 Class 6
ame g Te ‘l‘lbul"l
‘-. » »
& Clss 2
Semages P Insermal B mal
lllll *OOCO-ICO. k.‘“ 7 klbs “
-
g\:h.hu-ng
i Clame | Inderral e mal
URctarcisod . e
L Y Chaw 0
Inermal e
Chais 1) Claosn
These classes are respormsibie The st Casanes Can
e deaning the data. They msume dats s clean

make up the burncade ared trusted

Debugging Aids

Don’t Automatically Apply Production Constraints to the Development Version

A common programmer blind spot is the assumption that limitations of the production software apply to
the development version

Be willing to trade speed and resource usage during
development in exchange for built-in tools that can make
development go more smoothly.

Introduce Debugging Aids Early

The earlier you introduce debugging aids, the more they’ll help

Debugging Aids

Use Offensive Programming

Exceptional cases should be handled in a way that makes them obvious during development and
recoverable when production code is running

Make sure assert/abort the program. Don’t allow programmers to get into the habit of

just hitting the Enter key to bypass a known problem. Make the problem painful enough

that it will be fixed.

 Completely fill any memory allocated so that you can detect memory allocation errors.

* Completely fill any files or streams allocated to flush out any file-format errors.

* Be sure the code in each case statement’s default or else clause fails hard (aborts the
program) or is otherwise impossible to overlook.

* Fill an object with junk data just before it’s deleted.

* Set up the program to e-mail error log files to yourself so that you can see the kinds of

errors that are occurring in the released software, if that’s appropriate for the kind of

software you’re developing.

Debugging Aids

Plan to Remove Debugging Aids

If you’re writing code for your own use, it might be fine to leave all the debugging code in the program.
If you’re writing code for commercial use, the performance penalty in size and speed can be prohibitive.

Use version-control tools and Use a built-in Write your own

build tools like ant and make preprocessor preprocessor Use debugging stubs

Determining How Much Defensive Programming to
Leave in Production Code

Leave in code that checks Leave in code that helps the Log errors for your Make sure that error messages
for important errors program crash gracefully technical support personnel you leave in are friendly

Being Defensive About Defensive Programming

Think about where you need to be defensive, and set
your defensive programming priorities accordingly

SUMMAR

Production code should handle errors in a more sophisticated way than “garbage in, garbage out.”

Defensive-programming techniques make errors easier to find, easier to fix, and less damaging to
production code.

Assertions can help detect errors early, especially in large systems, high-reliability systems, and fast-
changing code bases.

The decision about how to handle bad inputs is a key error-handling decision and a key high-level
design decision.

Exceptions provide a means of handling errors that operates in a different dimension from the
normal flow of the code. They are a valuable addition to the programmer’s intellectual toolbox when
used with care, and they should be weighed against other error-processing techniques

Constraints that apply to the production system do not necessarily apply to the development
version. You can use that to your advantage, adding code to the development version that helps to
flush out errors quickly.

