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Code Tuning Strategies and Techniques



Outline

• Logic

• Loops

• Data Transformations

• Expressions



Logic

• Suppose you have a statement like

• Once you’ve determined that x is not greater than 5, you don’t need 

to perform the second half of the test.

• Some languages provide a form of expression evaluation known as 

short-circuit evaluation, which means that the compiler generates 

code that automatically stops testing as soon as it knows the answer.

• If not, how to fix it?



Logic

Stop Testing When You Know the Answer

If your language doesn’t support short-circuit evaluation natively, you 

have to avoid using and and or, adding logic instead. With short-

circuit evaluation, the code above changes to this:



Logic

Any problem?



Logic

Stop Testing When You Know the Answer

• The principle of not testing after you know the answer is a good one 

for many other kinds of cases as well.

A search loop is a common case

• If you’re scanning an array of input numbers for a negative value and 

you simply need to know whether a negative value is present, one 

approach is to check every value, setting a negativeFound variable 

when you find one.



Logic

Stop Testing When You Know the Answer



Logic

Stop Testing When You Know the Answer
A better approach would be to stop scanning as soon as you find a negative value. Any of 

these approaches would solve the problem:

• Add a break statement after the negativeInputFound = true line.

• If your language doesn’t have break, emulate a break with a goto that goes to the first statement

after the loop.

• Change the for loop to a while loop, and check for negativeInputFound as well as for incrementing

the loop counter past count.

• Change the for loop to a while loop, put a sentinel value in the first array element after the last 

value entry, and simply check for a negative value in the while test.

• After the loop terminates, see whether the position of the first found value is in the array or one

past the end.



Logic

Order Tests by Frequency

• Arrange tests so that the one that’s fastest and most likely to be true 
is performed first.

• It should be easy to drop through the normal case, and if there are 

inefficiencies, they should be in processing the uncommon cases. This 

principle applies to case statements and to chains of if-then-elses.



Logic

• Here’s a Visual Basic Select-
Case statement that responds

to keyboard input in a word

processor

• Any problem?



Logic

Order Tests by Frequency

• The cases in this case statement

are ordered in something close 

to the ASCII sort order



Logic

Order Tests by Frequency

Here’s the reordered case statement:



Logic

• The Microsoft Visual Basic results are as expected, but the Java and C# results are

not as expected.

• Apparently that’s because of the way switch-case statements are structured in C#

and Java, the C# and Java code doesn’t benefit from the optimization as the

Visual Basic code does.

• This result underscores the importance of not following any optimization advice 

blindly—specific compiler implementations will significantly affect the results.



Logic

Order Tests by Frequency

You might assume that the code generated by the Visual Basic compiler

for a set of if-then-elses that perform the same test as the case
statement would be similar. Take a look at those results:



Logic

Order Tests by Frequency

• For the same number of tests, the Visual Basic compiler takes about 

five times as long in the unoptimized case, four times in the

optimized case, compared to their switch-case versions.

• This suggests that the compiler is generating different code for the 

case approach than for the if-then-else approach.



Logic

Compare Performance of Similar Logic Structures

• The test described above could be performed using either a case 
statement or if-then-elses.

• Depending on the environment, either approach might work better.

• Here is the data from the preceding two tables reformatted to present

the “code-tuned” times comparing if-then-else and case 
performance:



Logic

• In Visual Basic, case is dramatically superior to if-then-else, and in 

another, if-then-else is dramatically superior to case.

• In C#, the difference is relatively small. You might think that because 

C# and Java share similar syntax for case statements, their results 

would be similar, but in fact their results are opposite each other.

• This example clearly illustrates the difficulty of performing any sort of 

“rule of thumb” or “logic” to code tuning—there is simply no reliable 

substitute for measuring results.



Logic

Substitute Table Lookups for Complicated Expressions

• In some circumstances, a table lookup might be quicker than 

traversing a complicated chain of logic.

• The point of a complicated chain is usually to categorize something 

and then to take an action based on its category.



Logic

Substitute Table Lookups for Complicated Expressions

As an abstract example, suppose you want to assign a category number

to something based on which of three groups—Groups A, B, and C—it 

falls into:



Logic

Substitute Table Lookups for Complicated Expressions

This complicated logic chain assigns the category numbers:



Logic

Substitute Table Lookups for Complicated Expressions

You can replace this test with a more modifiable and higher-

performance lookup table:



Logic

Substitute Table Lookups for Complicated Expressions

Although the definition of the table is hard to read, if it’s well 

documented it won’t be any harder to read than the code for the 

complicated chain of logic was. If the definition changes, the table will 

be much easier to maintain than the earlier logic would have been. 



Logic

Use Lazy Evaluation
• If a program uses lazy evaluation, it avoids doing any work until the work is

needed.

• For example, a program contains a table of 5000 values, generates the 

whole table at startup time, and then uses it as the program executes.

• If the program uses only a small percentage of the entries in the table, it 

might make more sense to compute them as they’re needed rather than all

at once.

• Once an entry is computed, it can still be stored for future reference 

(otherwise known as “cached”).



Loops

• Because loops are executed many times, the hot spots in a program 

are often inside loops.

• The techniques in this section make the loop itself faster.



Loops

• Any possible issues in terms of performance?



Loops – Unswitching

• Switching refers to making a decision inside a loop every time it’s
executed. If the decision doesn’t change while the loop is executing, you

can unswitch the loop by making the decision outside the loop.

• Usually this requires turning the loop inside out, putting loops inside the 

conditional rather than putting the conditional inside the loop.



Loops – Unswitching

• Good code?

• This code fragment violates 

several rules of good 

programming.

• Readability and maintenance are 

usually more important than 

execution speed or size, but the 

current topic is performance, and 

that implies a tradeoff with the 

other objectives



Loops – Unswitching

This is good for about a 20 percent time savings:



Loops – Unswitching

• Also, the case is that the two 
loops have to be maintained in 
parallel.
• If count changes to clientCount, 

you have to remember to change 

it in both places, which is an 

annoyance for you and a 

maintenance headache for 

anyone else who has to work

with the code.



Loops – Jamming

• Jamming, or “fusion,” is the result of combining two loops that 

operate on the same set of elements. The gain lies in cutting the loop 

overhead from two loops to one.

• Here’s a candidate for loop jamming:



Loops – Jamming

• When you jam loops, you find code in two loops that you ca combine

into one.

• Usually, that means the loop counters have to be the same. In this 

example, both loops run from 0 to employeeCount - 1, so you can 

jam them:



Loops – Jamming

• Here are the savings:

• As before, the results vary significantly among languages.



Loops – Unrolling

• The goal of loop unrolling is to reduce the amount of loop iterations.
• Although completely unrolling a loop is a fast solution and works well 

when you’re dealing with a small number of elements, it’s not 

practical when you have a large number of elements or when you 

don’t know in advance how many elements you’ll have.



Loops – Unrolling

• To unroll the loop partially, you handle two or more cases in each pass 

through the loop instead of one.

• This unrolling hurts readability but doesn’t hurt the generality of the 

loop. Here’s the loop unrolled once:



Loops – Unrolling

• The technique replaced the original a[ i ] = i line with two lines, and I 
is incremented by 2 rather than by 1. The extra code after the while 
loop is needed when count is odd and the loop has one iteration left 

after the loop terminates.



Loops – Unrolling

• A gain of 16 to 43 percent is respectable, although Python benchmark 

shows performance loss.

• The main hazard of loop unrolling is an off-by-one error in the code 

after the loop that picks up the last case.



Loops – Unrolling

• What if you unroll the loop even further, going for two or more

unrollings? Do you get more benefit if you unroll a loop twice?



Loops – Unrolling

• Here are the results of unrolling the loop the second time:

• The results indicate that further loop unrolling can result in further 
time savings, but not necessarily so, as the Java measurement shows.

Single Unrolling Time



Loops – Unrolling

• When you look at the previous code, you might not think it looks 

incredibly complicated, but when you see the performance gain, you 

can appreciate the tradeoff between performance and readability.



Loops – Minimizing the Work Inside Loops

• One key to writing effective loops is to minimize the work done inside 

a loop.

• If you can evaluate a statement or part of a statement outside a loop 

so that only the result is used inside the loop, do so.

• It’s good programming practice, and in some cases it improves 
readability.



Loops – Minimizing the Work Inside Loops

• Suppose you have a complicated pointer expression inside a loop:



Loops – Minimizing the Work Inside Loops

• In this case, assigning the complicated pointer expression to a well-

named variable improves readability and often improves 

performance.



Loops – Minimizing the Work Inside Loops

• The extra variable, quantityDiscount, makes it clear that the baseRate
array is being multiplied by a quantity-discount factor to compute the 

net rate.

• That wasn’t at all clear from the original expression in the loop.

• Putting the complicated pointer expression into a variable outside the 

loop also saves the pointer accesses for each pass through the loop, 

resulting in the following savings:



Loops – Sentinel Values



Loops – Sentinel Values

• Anything wrong?



Loops – Sentinel Values

• In this code, each iteration of the loop 

tests for !found and for i < count.

• The purpose of the !found test is to

determine when the desired element has 

been found.

• The purpose of the i < count test is to

avoid running past the end of the array.

Inside the loop, each value of item[] is

tested individually, so the loop really has 

three tests for each iteration.



Loops – Sentinel Values

• In this kind of search loop, you can combine the three tests so that 
you test only once per iteration by putting a “sentinel” at the end of 
the search range to stop the loop.

• In this case, you can simply assign the value you’re looking for to the 

element just beyond the end of the search range. (Remember to 

leave space for that element when you declare the array.)

• You then check each element, and if you don’t find the element until 

you find the one you stuck at the end, you know that the value you’re 

looking for isn’t really there.



Loops – Sentinel Values



Loops – Sentinel Values

• When item is an array of integers, the savings can be dramatic:



Loops – Sentinel Values

• The Visual Basic results are particularly dramatic, but all the results 

are good. When the kind of array changes, however, the results also 
change.

• When item is an array of single-precision floating-point numbers, the 

results are as follows:



Loops

• The total number of loop executions?



Loops – Putting the Busiest Loop on the Inside

• When you have nested loops, think about which loop you want on 

the outside and which you want on the inside. Following is an 

example of a nested loop that can be improved:



Loops – Putting the Busiest Loop on the Inside

• The key to improving the loop is that the outer loop executes much 

more often than the inner loop.

• Each time the loop executes, it has to initialize the loop index, 

increment it on each pass through the loop, and check it after each 

pass.



Loops

• Any comments on the performance?

• How can we run it faster?



Loops – Strength Reduction

• Reducing strength means replacing an expensive operation such as 

multiplication with a cheaper operation such as addition.

• Sometimes you’ll have an expression inside a loop that depends on 

multiplying the loop index by a factor.

• Addition is usually faster than multiplication, and if you can compute 

the same number by adding the amount on each iteration of the loop 

rather than by multiplying, the code will typically run faster.



Loops – Strength Reduction



Loops – Strength Reduction

• The key is that the original multiplication has to depend on the loop 

index. In this case, the loop index was the only part of the expression 

that varied, so the expression could be recoded more economically.



Data Transformations

• Changes in data types can be a powerful aid in reducing program size 

and improving execution speed.

• Data-structure design is outside the scope of this course, but modest 

changes in the implementation of a specific data type can also 

improve performance.

• Here are a few ways to tune your data types.



Data Transformations – Integers over Floats

• Integer addition and multiplication tend to be faster than floating 

point.

• Changing a loop index from a floating point to an integer, for example,

can save time:



Data Transformations

• How can we change and use this 2D array as 1D?



Data Transformations – Fewer Array Dims

• Multiple dimensions on arrays are expensive.

• If you can structure your data so that it’s in a one-dimensional array 

rather than a two-dimensional or three-dimensional array, you might 

be able to save some time.

• Suppose you have initialization code like this:



Data Transformations – Fewer Array Dims

• When this code is run with 50 rows and 20 columns, it takes twice as 

long with a Java compiler as when the array is restructured so that it’s 

one-dimensional.



Data Transformations – Fewer Array Dims

• Here’s a summary of the results, with the addition of comparable 

results in several other languages:



Data Transformations – Less Array Refs

• In addition to minimizing accesses to doubly or triply dimensioned 

arrays, it’s often advantageous to minimize array accesses.

• A loop that repeatedly uses one element of an array is a goo 

candidate for the application of this technique.



Data Transformations – Less Array Refs

• The reference to discount[ discountType ] doesn’t change when 

discountLevel changes in the inner loop.

• Consequently, you can move it out of the inner loop so that you’ll 

have only one array access per execution of the outer loop rather 

than one for each execution of the inner loop.



Data Transformations – Less Array Refs

• Results vary significantly from compiler to compiler.



Data Transformations – Use Supplm Indexes

• Using a supplementary index means adding related data that makes 

accessing a data type more efficient.

• You can add the related data to the main data type, or you can store it 

in a parallel structure



Data Transformations – Use Supplm Indexes

String-Length Index
• One example of using a supplementary index can be found in the different 

string-storage strategies.

• In C, strings are terminated by a byte that’s set to 0.

• To determine the length of a string in C, a program has to start at the beginning of 

the string and count each byte until it finds the byte that’s set to 0.

• In Visual Basic string format, a length byte hidden at the beginning of each 

string indicates how long the string is.

• To determine the length of a Visual Basic string, the program just looks at the length 

byte. Visual Basic length byte is an example of augmenting a data type with an index 

to make certain operations—like computing the length of a string—faster.



Data Transformations – Use Supplm Indexes

String-Length Index
• You can apply the idea of indexing for length to any variable-length 

data type.

• It’s often more efficient to keep track of the length of the structure 

rather than computing the length each time you need it.



Data Transformations – Use Caching

• Caching means saving a few values in such a way that you can retrieve 

the most commonly used values more easily than the less commonly 

used values.

• If a program randomly reads records from a disk, for example, a 

routine might use a cache to save the records read most frequently.

• When the routine receives a request for a record, it checks the cache 

to see whether it has the record. If it does, the record is returned 

directly from memory rather than from disk.



Data Transformations – Use Caching

• In addition to caching records on disk, you can apply caching in other 

areas.

• In a Microsoft Windows font-proofing program, the performance 

bottleneck was in retrieving the width of each character as it was 

displayed.

• Caching the most recently used character width roughly doubled the 

display speed



Data Transformations – Use Caching

• You can cache the results of time-consuming computations too—

especially if the parameters to the calculation are simple.

• Suppose, for example, that you need to compute the length of the 

hypotenuse of a right triangle, given the lengths of the other two 

sides. The straightforward implementation:



Data Transformations – Use Caching

• If you know that the same 

values tend to be requested 

repeatedly, you can cache 

values this way:



Data Transformations – Use Caching

• The second version of the routine is more complicated than the first 

and takes up more space, so speed has to be at a premium to justify 

it. Many caching schemes cache more than one element, so they have 

even more overhead. Here’s the speed difference:



Data Transformations – Use Caching

• The success of the cache depends on the relative costs of accessing a cached

element, creating an uncached element, and saving a new element in the cache.

• Success also depends on how often the cached information is requested. In some

cases, success might also depend on caching done by the hardware.

• Generally, the more it costs to generate a new element and the more times the

same information is requested, the more valuable a cache is. The cheaper it is to

access a cached element and save new elements in the cache, the more valuable 

a cache is.

• As with other optimization techniques, caching adds complexity and tends to be 

error-prone.



Expressions

• Much of the work in a program is done inside mathematical or logical 

expressions.

• Complicated expressions tend to be expensive, so this section looks

at ways to make them cheaper.



Expressions – Exploit Algebraic Identities

• You can use algebraic identities to replace costly operations with cheaper ones.

• For example, the following expressions are logically equivalent:

• If you choose the second expression instead of the first, you can save a not 
operation.

• Although the savings from avoiding a single not operation are probably 

inconsequential, the general principle is powerful.



Expressions – Exploit Algebraic Identities

• For example, a program on whether sqrt(x) < sqrt(y). Since sqrt(x) is 

less than sqrt(y) only when x is less than y, you can replace the first 

test with x < y.

• Given the cost of the sqrt() routine, you’d expect the savings to be 

dramatic, and they are. Here are the results:



Expressions – Use Strength Reduction

• Strength reduction means replacing an expensive operation with a 

cheaper one. Here are some possible substitutions:

• Replace multiplication with addition.

• Replace exponentiation with multiplication.

• Replace floating-point numbers with fixed-point numbers or integers.

• Replace double-precision floating points with single-precision numbers.

• Replace integer multiplication-by-two and division-by-two with shift 

operations.



Expressions – Use Strength Reduction

• Suppose you have to evaluate a polynomial. If you’re rusty on 

polynomials, they’re the things that look like Ax2 + Bx + C.

• The letters A, B, and C are coefficients, and x is a variable. General 

code to evaluate an nth-order polynomial looks like this:



Expressions – Use Strength Reduction

• One solution would be to replace the exponentiation with a 

multiplication on each pass through the loop, which is analogous to 

the strength-reduction case a few sections ago in which a 

multiplication was replaced with an addition.



Expressions – Use Strength Reduction

• This produces a noticeable advantage if you’re working with second-

order polynomials—that is, polynomials in which the highest-power 

term is squared—or higher-order polynomials:



Expressions

• Compute the base-two logarithm of an integer, truncated to the 

nearest integer.

• Any suggestion to improve its performance?



Expressions – Initialize at Compile Time

• If you’re using a named constant or a magic number in a routine call and it’s the 

only argument, that’s a clue that you could precompute the number, put it into a 

constant, and avoid the routine call.

• The same principle applies to multiplications, divisions, additions, and other

operations.

• For example, compute the base-two logarithm of an integer, truncated to the

nearest integer. If the system doesn’t have a log- base-two routine, a quick and

easy approach:



Expressions – Initialize at Compile Time

• This routine is very slow, and because the value of log(2) never 

changed, replace log(2) with its computed value, 0.69314718, like 

this:



Expressions – Initialize at Compile Time

• Since log() tends to be an expensive routine—much more expensive 

than type conversions or division—you’d expect that cutting the calls 

to the log() function by half would cut the time required for the 

routine by about half.



Expressions – Be Wary of System Routines

• System routines are expensive and provide accuracy that’s often 

wasted.

• Typical system math routines, for example, are designed to put an 

astronaut on the moon within ±2 feet of the target. If you don’t need 

that degree of accuracy, you don’t need to spend the time to compute

it either.



Expressions – Be Wary of System Routines

• In the previous example, the

Log2() routine returned an

integer value but used a 

floating-point log() routine

to compute it.

• That was problematic for an 

integer result, so write a

series of integer tests that

were perfectly accurate for

calculating an integer log2.



Expressions – Be Wary of System Routines

• This routine uses integer operations, never converts to floating point, 

and blows the doors off both floating-point versions:



Expressions – Be Wary of System Routines

• Another option is to take advantage of the fact that a right-shift 

operation is the same as dividing by two.

• The number of times you can divide a number by two and still have a 

nonzero value is the same as the log2 of that number.



Expressions – Be Wary of System Routines

• To non-C++ programmers, this code is particularly hard to read. The 

complicated expression in the while condition is an example of a 

coding practice you should avoid unless you have a good reason to

use it.

• This example highlights the value of not stopping after one successful 

optimization. The first optimization earned a respectable 30–40

percent savings but had nowhere near the impact of the second or 

third optimizations.



Expressions – Precompute Results

• A common low-level design decision is the choice of whether to 

compute results on the fly or compute them once, save them, and 

look them up as needed.

• If the results are used many times, it’s often cheaper to compute 

them once and look them up the rest of the time.



Expressions – Precompute Results

• At the simplest level, you might compute part of an expression 

outside a loop rather than inside.

• At a more complicated level, you might compute a lookup table once 

when program execution begins, using it every time thereafter, or you 

might store results in a data file or embed them in a program.



Expressions – Precompute Results

• Any performance improvement suggestion?



Expressions – Precompute Results



Expressions – Precompute Results

• This is similar to the techniques suggested earlier of putting array 

references and pointer dereferences outside a loop.

• The results for Java in this case are comparable to the results of using 

the precomputed table in the first optimization:



Expressions – Precompute Results

• Optimizing a program by pre-computation can take several forms:

• Computing results before the program executes, and wiring them into constants that are assigned

at compile time

• Computing results before the program executes, and hard-coding them into variables used at run 

time

• Computing results before the program executes, and putting them into a file that’s loaded at run 

time

• Computing results once, at program startup, and then referencing them each time they’re needed

• Computing as much as possible before a loop begins, minimizing the work done inside the loop

• Computing results the first time they’re needed, and storing them so that you can retrieve them

when they’re needed again



Expressions – Eliminate Common Subexpressions

• If you find an expression that’s repeated several times, assign it to a 

variable and refer to the variable rather than recomputing the 

expression in several places.

• The loan-calculation example has a common subexpression that you 

could eliminate. This is the original code:



Expressions – Eliminate Common Subexpressions

• You can assign interestRate/12.0 to a variable that is then referenced 

twice rather than computing the expression twice.

• If you have chosen the variable name well, this optimization can 

improve the code’s readability at the same time that it improves 
performance.



Expressions – Eliminate Common Subexpressions

• The savings in this case don’t seem impressive:



Code Refactoring



Refactoring

• Modifying software to improve its readability, maintainability, and

extensibility without changing what it actually does.

• External behavior does NOT change

• Internal structure is improved



Refactoring

• It is a disciplined way to clean up code that minimizes the chances of 

introducing bugs.

• In essence when you refactor you are improving the design of the 

code after it has been written.

• In software development, we design first then we code

• Refactoring is the opposite of this practice: take a bad design, and rework it 

into well-designed code



Refactoring

• Each step is simple

• move a field from one class to another,

• pull some code out of a method to make into its own method, and

• push some code up or down a hierarchy

• Yet the cumulative effect of these small changes can radically improve 

the design.



Composing Methods – Extract Method

• You have a code fragment that can be grouped together.

• Turn the fragment into a method whose name explains the purpose 

of the method.



Composing Methods – Extract Method

Motivation
• Method is too long or code that needs a comment to understand its 

purpose. Then turn that fragment of code into its own method.

• Prefer short, well-named methods for several reasons:

• First, it increases the chances that other methods can use a method when the

method is finely grained.

• Second, it allows the higher-level methods to read more like a series of 

comments. Overriding also is easier when the methods are finely grained.



Composing Methods – Extract Method

Mechanics
• Create a new method, and name it after the intention of the method 

(name it by what it does, not by how it does it).

• Copy the extracted code from the source method into the new target 

method.

• Scan the extracted code for references to any variables that are local 

in scope to the source method. These are local variables and 

parameters to the method.



Composing Methods – Extract Method

Mechanics (cont.)
• See whether any temporary variables are used only within this 

extracted code. If so, declare them in the target method as temporary 

variables.

• Look to see whether any of these local-scope variables are modified 

by the extracted code.

• If one variable is modified, see whether you can treat the extracted code as a

query and assign the result to the variable concerned.



Composing Methods – Extract Method

Mechanics (cont.)
• Pass into the target method as parameters local-scope variables that 

are read from the extracted code.

• Replace the extracted code in the source method with a call to the 

target method



Composing Methods – Extract Method



Composing Methods – Extract Method

• Example: No Local Variables
• Extract the code that prints the

banner. Just cut, paste, and put in

a call:



Composing Methods – Extract Method

Example: Using Local Variables
• The problem is local variables: parameters passed into the original 

method and temporaries declared within the original method.

• The easiest case with local variables is when the variables are read 

but not changed.

• In this case, can just pass them as parameters



Composing Methods – Extract Method

Example: Using Local 
Variables
• Extract the printing of details 

with a method with one 

parameter:



Composing Methods – Extract Method

Example: Using Local 
Variables
• extract the printing of details 

with a method with one 

parameter:



Composing Methods – Extract Method

Example: Reassigning a Local Variable

• It's the assignment to local variables that becomes complicated. In this

case we're only talking about temps.

• For temps that are assigned to, there are two cases:

• The simpler case is that in which the variable is a temporary variable used only within

the extracted code. When that happens, you can move the temp into the extracted

code.

• The other case is use of the variable outside the code. If the variable is not used after

the code is extracted, you can make the change in just the extracted code.



Composing Methods – Extract Method

Example: Reassigning a Local 
Variable
• If it is used afterward, you need 

to make the extracted code 

return the changed value of the 

variable.



Composing Methods – Extract Method

Example: Reassigning a Local 
Variable
• If it is used afterward, you need 

to make the extracted code 

return the changed value of the 

variable.

• The enumeration variable is 

used only in the extracted

code, so I can move it entirely

within the new method.



Composing Methods – Extract Method

Example: Reassigning a Local Variable
• Rename the returned value if required:



Composing Methods – Extract Method

Example: Reassigning a 
Local Variable
• If something more 

involved happens to the 

variable, have to pass in 

the previous value as a 

parameter.



Composing Methods – Extract Method

Example: Reassigning a 
Local Variable
• In this case, the 

extraction would look

like this:



Composing Methods – Replace Temp with Query

• You are using a temporary variable to

hold the result of an expression.

• Extract the expression into a 

method.

• Replace all references to the temp 

with the expression. The new 

method can then be used in other 

methods.



Composing Methods – Replace Temp with Query

Motivation
• The problem with temps is that they are temporary and local. 

Because they can be seen only in the context of the method in which 

they are used, temps tend to encourage longer methods, because 

that's the only way you can reach the temp.

• By replacing the temp with a query method, any method in the class 

can get at the information. That helps a lot in coming up with cleaner 

code for the class.



Composing Methods – Replace Temp with Query

Mechanics
• Look for a temporary variable that is assigned to once.

• If a temp is set more than once consider Split Temporary Variable

• Declare the temp as final.

• This will ensure that the temp is only assigned to once

• Extract the right-hand side of the assignment into a method.

• Initially mark the method as private. You may find more use for it later, but you

can easily relax the protection later.



Composing Methods – Replace Temp with Query

• Example: Start with a simple method



Composing Methods – Replace Temp with Query

Example
• I'm inclined to replace both temps, one at a time.

• Although it's pretty clear in this case, I can test that they are assigned 

only to once by declaring them as final



Composing Methods – Replace Temp with Query

Example
• Compiling will then alert me to any problems. I do this first, because if 

there is a problem, I shouldn't be doing this refactoring.

• I replace the temps one at a time. First I extract the right-hand side of 

the assignment:



Composing Methods – Replace Temp with Query

Example
• First I replace the first reference to the temp:



Composing Methods – Replace Temp with Query

Example
• Do the next. Also remove the temp declaration:



Composing Methods – Replace Temp with Query

Example
• With that gone, can extract discountFactor in a similar way:



Composing Methods – Replace Temp with Query

• Example
• See how it would have been difficult to extract discountFactor if I had 

not replaced basePrice with a query.

• The getPrice method ends up as follows:



Composing Methods – Introduce Explaining 
Variable

• You have a complicated expression. Put the result of the expression,

or parts of the expression, in a temporary variable with a name that

explains the purpose.



Composing Methods – Introduce Explaining 
Variable

Motivation
• Expressions can become very complex and hard to read.

• In such situations temporary variables can be helpful to break down 

the expression into something more manageable.



Composing Methods – Introduce Explaining 
Variable

Mechanics
• Declare a final temporary variable, and set it to the result of part of 

the complex expression.

• Replace the result part of the expression with the value of the temp.

• If the result part of the expression is repeated, you can replace the repeats 

one at a time.

• Repeat for other parts of the expression.



Composing Methods – Introduce Explaining 
Variable

Example
• Start with a simple calculation:



Composing Methods – Introduce Explaining 
Variable

Example
• Simple: it may be, but can make it easier to follow.

• First I identify the base price as the quantity times the item price. I 

can turn that part of the calculation into a temp:



Composing Methods – Introduce Explaining 
Variable

Example
• Quantity times item price is also used later, so can substitute with the 

temp there as well:



Composing Methods – Introduce Explaining 
Variable

Example
• Next I take the quantity discount:



Composing Methods – Introduce Explaining 
Variable

Example
• Finally, I finish with the shipping. As do that, can remove the 

comment, too, because now it doesn't say anything the code doesn’t 

say:



Composing Methods – Introduce Explaining 
Variable

Example with Extract Method
• Start again:



Composing Methods – Introduce Explaining 
Variable

Example with Extract Method



Composing Methods – Introduce Explaining 
Variable

Example with Extract Method
• When to use Introduce Explaining Variable? The answer is when 

Extract Method is more effort.

• If I'm in an algorithm with a lot of local variables, I may not be able to 

easily use Extract Method. In this case I use Introduce Explaining 

Variable to help me understand what is going on.

• As the logic becomes less tangled, I can always use Replace Temp with 

Query later. The temp also is valuable if I end up having to use 

Replace Method with Method Object.



Composing Methods – Split Temporary Variable

• You have a temporary variable assigned to more than once, but is not 

a loop variable nor a collecting temporary variable.

• Make a separate temporary variable for each assignment.



Composing Methods – Split Temporary Variable

Motivation
• Temporary variables are made for various uses. Some of these uses 

naturally lead to the temp's being assigned to several times.

• Loop variables change for each run around a loop (such as the i in for (int

i=0; i<10; i++). Collecting temporary variables collect together some value

that is built up during the method.

• Many other temporaries are used to hold the result of a long-winded bit of 

code for easy reference later.

• These kinds of variables should be set only once. Otherwise, its purpose will 

be confusing and it will be error-prone.



Composing Methods – Split Temporary Variable

Mechanics
• Change the name of a temp at its declaration and its first assignment.

• If the later assignments are of the form i = i + some expression, that indicates that it is a collecting 

temporary variable, so don't split it. The operator for a collecting temporary variable usually is

addition, string concatenation, writing to a stream, or adding to a collection.

• Declare the new temp as final.

• Change all references of the temp up to its second assignment.

• Declare the temp at its second assignment

• Repeat in stages, each stage renaming at the declaration, and changing references until

the next assignment.



Composing Methods – Remove Assignments to
Parameters

• The code assigns to a parameter.

• Use a temporary variable instead.



Composing Methods – Remove Assignments to
Parameters

Motivation
• If you pass in an object named foo, in the parameter, assigning to the 

parameter means to change foo to refer to a different object.

• The reason don't like this comes down to lack of clarity and to 

confusion between pass by value and pass by reference



Composing Methods – Remove Assignments to
Parameters

Mechanics
• Create a temporary variable for the parameter.

• Replace all references to the parameter, made after the assignment, 

to the temporary variable.

• Change the assignment to assign to the temporary variable.



Composing Methods – Remove Assignments to
Parameters

Example
• Start with the following simple routine:



Composing Methods – Remove Assignments to
Parameters

Example
• Replacing with a temp leads to



Composing Methods – Remove Assignments to
Parameters

Example
• You can enforce this convention with the final keyword:



Composing Methods – Replace Method with
Method Object

• You have a long method that uses local variables in such a way that 

you cannot apply Extract Method.

• Turn the method into its own object so that all the local variables 

become fields on that object. You can then decompose the method 

into other methods on the same object.



Composing Methods – Replace Method with
Method Object

Motivation
• The difficulty in decomposing a method lies in local variables. If they 

are rampant, decomposition can be difficult.

• Using Replace Temp with Query helps to reduce this burden, but 

occasionally you may find you cannot break down a method that 

needs breaking.

• In this case you reach deep into the tool bag and get out your method 

object



Composing Methods – Replace Method with
Method Object

Mechanics
• Create a new class, name it after the method.

• Give the new class a final field for the object that hosted the original 

method (the source object) and a field for each temporary variable 

and each parameter in the method.

• Give the new class a constructor that takes the source object and 

each parameter.

• Give the new class a method named "compute."



Composing Methods – Replace Method with
Method Object

Mechanics (cont.)
• Copy the body of the original method into compute. Use the source 

object field for any invocations of methods on the original object.

• Replace the old method with one that creates the new object and 

calls compute.

• Because all the local variables are now fields, you can freely 

decompose the method without having to pass any parameters.



Composing Methods – Replace Method with
Method Object

• Example
• A proper example of this requires a long chapter, so showing this 

refactoring for a method that doesn't need it.



Composing Methods – Replace Method with
Method Object

Example
• To turn this into a method object, I begin by declaring a new class. I 

provide a final field for the original object and a field for each 

parameter and temporary variable in the method.



Composing Methods – Replace Method with
Method Object

Example
• Add a constructor:



Composing Methods – Replace Method with
Method Object

Example
• Now can move the original method over; need to modify any calls of 

features of account to use the _account field



Simplifying Conditional Expressions –
Decompose Conditional

• You have a complicated conditional (if-then-else) statement.

• Extract methods from the condition, then part, and else parts.



Simplifying Conditional Expressions –
Decompose Conditional
Motivation
• As with any large block of code, you can make your intention clearer by 

decomposing it and replacing chunks of code with a method call named

after the intention of that block of code.

• With conditions you can receive further benefit by doing this for the 

conditional part and each of the alternatives.

• This way you highlight the condition and make it clearly what you are 

branching on.

• You also highlight the reason for the branching.



Simplifying Conditional Expressions –
Decompose Conditional

Mechanics
• Extract the condition into its own method.

• Extract the then part and the else part into their own methods.



Simplifying Conditional Expressions –
Decompose Conditional



Simplifying Conditional Expressions –
Consolidate Conditional Expression

• You have a sequence of conditional tests with the same result.

• Combine them into a single conditional expression and extract it.



Simplifying Conditional Expressions –
Consolidate Conditional Expression



Simplifying Conditional Expressions –
Consolidate Conditional Expression


