SWEN 6301 Software Construction
Module 7: Code Tuning and Refactoring

Ahmed Tamrawi

Copyright notice: 1- care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.
2- many slides are adopted with permission from lan Sommerville and Mustafa Misir ‘s lecture notes on Software Engineering course and Modern Software Development Technology course.

Code Tuning Strategies and Techniques

Outline

* Logic
* Loops
e Data Transformations

* Expressions

Logic

* Suppose you have a statement like

if (5 <x) and (x < 10) then ...

* Once you’ve determined that x is not greater than 5, you don’t need
to perform the second half of the test.

* Some languages provide a form of expression evaluation known as
short-circuit evaluation, which means that the compiler generates
code that automatically stops testing as soon as it knows the answer.

* If not, how to fix it?

Logic

Stop Testing When You Know the Answer

If your language doesn’t support short-circuit evaluation natively, you
have to avoid using and and or, adding logic instead. With short-
circuit evaluation, the code above changes to this:

if (5 <x) and (x < 10) then ...

4

if (5 < x) then
1if (x < 10) then ...

Logic

Any problem?

negativeInputFound = false;
for (1 =0; 1 < count; 1++) {

1if (input[1] < 0) {
negativeInputFound = true;

Logic

Stop Testing When You Know the Answer

* The principle of not testing after you know the answer is a good one
for many other kinds of cases as well.

A search loop is a common case

* If you're scanning an array of input numbers for a negative value and
you simply need to know whether a negative value is present, one
approach is to check every value, setting a negativeFound variable
when you find one.

Logic

Stop Testing When You Know the Answer

negativeInputFound = false;
for (i = 0; i < count; i++) {

1t (input[1] <0) {
negativeInputFound = true;

}

Logic

Stop Testing When You Know the Answer

A better approach would be to stop scanning as soon as you find a negative value. Any of
these approaches would solve the problem:

Add a break statement after the negativelnputFound = true line.

If your language doesn’t have break, emulate a break with a goto that goes to the first statement
after the loop.

Change the for loop to a while loop, and check for negativelnputFound as well as for incrementing
the loop counter past count.

Change the for loop to a while loop, put a sentinel value in the first array element after the last
value entry, and simply check for a negative value in the while test.

After the loop terminates, see whether the position of the first found value is in the array or one
past the end.

Logic

Order Tests by Frequency

* Arrange tests so that the one that’s fastest and most likely to be true
is performed first.

* It should be easy to drop through the normal case, and if there are
inefficiencies, they should be in processing the uncommon cases. This
principle applies to case statements and to chains of if-then-elses.

Logic

. . Select inputCharacter
* Here’s a Visual Basic Select- >

Case "+4", "="
Case statement that resp0nd5 ProcessMathSymbol(inputCharacter)
to keyboard input in a word Case "0" To "9"
ProcessDigit(inputCharacter)
processor o e e mm mam e
Case ', ', .0, "0, Ty, nrn o n?
° Any problem? ProcessPunctuation(inputCharacter)
Case " "
ProcessSpace(inputCharacter)
Case "A" To "Z", "a" To "Zz"

ProcessAlpha(inputCharacter)
Case Else
ProcessError(inputCharacter)
End Select

Logic

Order Tests by Frequency

e The cases in this case statement
are ordered in something close
to the ASCII sort order

Visual Basic Example of a Poorly Ordered Logical Test

Select inputcCharacter
Case "+", "="
ProcessMathsymbol(inputCharacter)
Case "0" To "9"
ProcessDigit(inputCharacter)

Case)", ".U,otomyomymomnoven
ProcessPunctuation(inputCharacter)

Case " "
ProcessSpace(inputCharacter)

case "A" To "z", "a" To "z"
ProcessAlpha(inputcCharacter)

Case Else

ProcessError(inputCharacter)
End Select

Logic

Order Tests by Frequency

Here’s the reordered case statement:

Visual Basic Example of a Well-Ordered Logical Test
Select inputCharacter

case "A" TO "Z", "a" To "Zz"

ProcessAlpha(inputCharacter)
Case " "

ProcessSpace(inputCharacter)
Case "™, ".U,otempomytyomn vt

ProcessPunctuation(inputcCharacter)
Case "0" To "9"

ProcessDigit(inputCharacter)
Case "+", "="

ProcessMathsymbol(inputCharacter)
Case Else

ProcessError(inputCharacter)

End Select

’

Logic

Language Straight Time Code-Tuned Time Time Savings
C# 0.220 0.260 -18%
Java 2.56 2.56 0%
Visual Basic 0.280 0.260 7%

Note: Benchmarked with an input mix of 78 percent alphabetic characters, 17 percent spaces, and 5 percent
punctuation symbols.

* The Microsoft Visual Basic results are as expected, but the Java and C# results are
not as expected.

e Apparently that’s because of the way switch-case statements are structured in C#
and Java, the C# and Java code doesn’t benefit from the optimization as the
Visual Basic code does.

* This result underscores the importance of not following any optimization advice
blindly—specific compiler implementations will significantly affect the results.

Logic

Order Tests by Frequency

You might assume that the code generated by the Visual Basic compiler
for a set of if-then-elses that perform the same test as the case
statement would be similar. Take a look at those results:

Language Straight Time Code-Tuned Time Time Savings
C# 0.630 0.330 48%
Java 0.922 0.460 50%

Visual Basic 1.36 1.00 26%

Logic

Order Tests by Frequency

* For the same number of tests, the Visual Basic compiler takes about
five times as long in the unoptimized case, four times in the
optimized case, compared to their switch-case versions.

* This suggests that the compiler is generating different code for the
case approach than for the if-then-else approach.

Logic

Compare Performance of Similar Logic Structures

* The test described above could be performed using either a case
statement or if-then-elses.

* Depending on the environment, either approach might work better.

* Here is the data from the preceding two tables reformatted to present
the “code-tuned” times comparing if-then-else and case
performance:

Language case if-then-else Time Savings

. c# 0.260 0.330 -27%
LO g IC Java 256 0.460 82%
Visual Basic 0.260 1.00 -258%

* In Visual Basic, case is dramatically superior to if-then-else, and in
another, if-then-else is dramatically superior to case.

* In CH#, the difference is relatively small. You might think that because
C# and Java share similar syntax for case statements, their results
would be similar, but in fact their results are opposite each other.

* This example clearly illustrates the difficulty of performing any sort of
“rule of thumb” or “logic” to code tuning—there is simply no reliable
substitute for measuring results.

Logic

Substitute Table Lookups for Complicated Expressions

* In some circumstances, a table lookup might be quicker than
traversing a complicated chain of logic.

* The point of a complicated chain is usually to categorize something
and then to take an action based on its category.

Logic

Substitute Table Lookups for Complicated Expressions

As an abstract example, suppose you want to assign a category number
to something based on which of three groups—Groups A, B, and C—it

falls into:

Logic

Substitute Table Lookups for Complicated Expressions

This complicated logic chain assigns the category numbers:

C++ Example of a Complicated Chain of Logic

if((a&k!'c) |] (a&b&&c)) {
category = 1;

}

else if ((b && 'a) || (a&& c&& 'b)) {
category = 2;

¥

else if (c & 'a && 'b) {
category = 3;

¥

else {
category = 0;

¥

Logic

Substitute Table Lookups for Complicated Expressions

You can replace this test with a more modifiable and higher-
performance lookup table:

C++ Example of Using a Table Lookup to Replace Complicated Logic
// define categoryTable

This table definition is __» static int categoryTable[2][2 J[2] = {
somewhat difficult to // 'blc 'bc blc bc

understand. Any comment- o, 3, 2, 2, /J/ la

ing you can do to make i, 2, 1, 1 // a

table definitions readable It

helps.

category = categoryTable[a J[b][c 1;

Logic

Substitute Table Lookups for Complicated Expressions

Although the definition of the table is hard to read, if it’s well
documented it won’t be any harder to read than the code for the
complicated chain of logic was. If the definition changes, the table will
be much easier to maintain than the earlier logic would have been.

Code-Tuned Time
Language Straight Time Time Savings

C++ 5.04 3.39 33%
Visual Basic 5.21 2.60 50%

Logic

Use Lazy Evaluation
* |f a program uses lazy evaluation, it avoids doing any work until the work is
needed.

* For example, a program contains a table of 5000 values, generates the
whole table at startup time, and then uses it as the program executes.

* |f the program uses only a small percentage of the entries in the table, it
might make more sense to compute them as they’re needed rather than all

at once.

* Once an entry is computed, it can still be stored for future reference
(otherwise known as “cached”).

Loops

* Because loops are executed many times, the hot spots in a program
are often inside loops.

* The techniques in this section make the loop itself faster.

Loops

* Any possible issues in terms of performance?

for (1 =0; 1 < count; i++) {
1T (sumType == SUMTYPE_NET) {
netSum = netSum + amount[1];

}
else {

grossSum = grossSum + amount[1];
}

Loops — Unswitching

* Switching refers to making a decision inside a loop every time it’s
executed. If the decision doesn’t change while the loop is executing, you
can unswitch the loop by making the decision outside the loop.

e Usually this requires turning the loop inside out, putting loops inside the
conditional rather than putting the conditional inside the loop.

C++ Example of a Switched Loop C++ Example of an Unswitched Loop
if (sumType == SUMTYPE_NET) {
for (1 =0; 1 < count; i++) {
netSum = netSum + amount[i];

for (1 =0; 1 < count; i++) {
1if (sumType == SUMTYPE_NET) {

netSum = netSum + amount[1]; }
})
else { else 1

for (1 =0; i < count; i++) {

grossSum = grossSum + amount[1]; .
grosssum = grossSum + amount[1];

h }
¥ }

Loops — Unswitching

e Good code?

* This code fragment violates
several rules of good
programming.

* Readability and maintenance are
usually more important than
execution speed or size, but the
current topic is performance, and
that implies a tradeoff with the
other objectives

C++ Example of an Unswitched Loop
1f (sumType == SUMTYPE_NET) {
for (1 = 0; 1 < count; i++) {
netSum = netSum + amount[1];

¥

¥
else {
for (1 = 0; 1 < count; i++) {
grossSum = grossSum + amount[1];
¥
¥

Loops — Unswitching

This is good for about a 20 percent time savings:

Language Straight Time Code-Tuned Time Time Savings
C++ 2.81 2.27 19%
Java 3.97 3.12 21%
Visual Basic 2.78 2.77 <1%
Python 8.14 5.87 28%

Loops — Unswitching

* Also, the case is that the two
loops have to be maintained in
parallel.

C++ Example of an Unswitched Loop
1f (sumType == SUMTYPE_NET) {
for (1 = 0; 1 < count; 1++) {

* If count changes to clientCount, hetsum = netsum + amount[1];
you have to remember to change }
it in both places, which is an
annoyance for you and a
maintenance headache for
anyone else who has to work }
with the code. }

else {
for (1 =0; 1 < count; 1++) {
grossSum = grossSum + amount[1];

Loops —Jamming

e Jamming, or “fusion,” is the result of combining two loops that

operate on the same set of elements. The gain lies in cutting the loop
overhead from two loops to one.

* Here’s a candidate for loop jamming:

Visual Basic Example of Separate Loops That Could Be Jammed

For 1 = 0 to employeeCount - 1
employeeName(1) = ""
Next

For 1 = 0 to employeeCount - 1
employeeEarnings(1) =0
Next

Loops —Jamming

* When you jam loops, you find code in two loops that you ca combine
Into one.

* Usually, that means the loop counters have to be the same. In this
example, both loops run from 0 to employeeCount - 1, so you can
jam them:

Visual Basic Example of a Jammed Loop

For 1 = 0 to employeeCount - 1
employeeName(1) = ""
employeeEarnings(1) =0

NeXxtT

Loops —Jamming

* Here are the savings:

Language Straight Time Code-Tuned Time Time Savings
C++ 3.68 2.65 28%
PHP 3.97 2.42 32%
Visual Basic 3.75 3.56 4%

Note: Benchmarked for the case in which employeeCount equals 100.

* As before, the results vary significantly among languages.

Loops — Unrolling

* The goal of loop unrolling is to reduce the amount of loop iterations.

* Although completely unrolling a loop is a fast solution and works well
when you’re dealing with a small number of elements, it’s not
practical when you have a large number of elements or when you
don’t know in advance how many elements you’ll have.

Java Example of a Loop That Can Be Unrolled
1 = 0;
while (1 < count) {

al 1] =1;

1 =1+ 1;

Loops — Unrolling

* To unroll the loop partially, you handle two or more cases in each pass
through the loop instead of one.

* This unrolling hurts readability but doesn’t hurt the generality of the

loop. Here’s the loop unrolled once:
Java Example of a Loop That's Been Unrolled Once

i=0;

while (i < count - 1) {
al 1] = 1;
al 1 +1] =1+ 1;
i=1+ 2;

}

These lines pick up the case if (i == count - 1) {
that might fall through the ’I: a[count - 1] = count - 1;
cracks if the loop went by }

twos instead of by ones.

Loops — Unrolling

* The technique replaced the original af i] = i line with two lines, and /
is incremented by 2 rather than by 1. The extra code after the while
loop is needed when count is odd and the loop has one iteration left

after the loop terminates.
Java Example of a Loop That's Been Unrolled Once

i=0;

while (1 < count - 1) {
al 1] = 1;
al i +1] =1+ 1;
i=1+ 2;

}

These lines pick up the case if (i == count - 1) {
that might fall through the ’I: a[count - 1] = count - 1;
cracks if the loop went by }

twos instead of by ones.

Loops — Unrolling

* A gain of 16 to 43 percent is respectable, although Python benchmark
shows performance loss.

* The main hazard of loop unrolling is an off-by-one error in the code
after the loop that picks up the last case.

Language Straight Time Code-Tuned Time Time Savings
C++ 1.75 1.15 34%
Java 1.01 0.581 43%
PHP 5.33 4.49 16%
Python 2.51 3.21 -27%

Note: Benchmarked for the case in which count equals 100.

Loops — Unrolling

* What if you unroll the loop even further, going for two or more
unrollings? Do you get more benefit if you unroll a loop twice?

Java Example of a Loop That's Been Unrolled Twice

1 = 0;
while (1 < count - 2) {
al 1] = 1;
al 1 + 11 = 1i+1;
al 1+ 2 1 = 1+2;
i =1+ 3;
}

if (1 <= count - 1) {

a[count - 1] = count - 1;
}
if (1 == count - 2) {

a[count -2] = count - 2;

}

Language Straight Time Single Unrolling Time Time Savings

. C++ 1.75 1.15 34%

Loops — Unrolling Lo o581 -
PHP 5.33 4.49 16%

Python 2.51 321 -27%

Note: Benchmarked for the case in which count equals 100.

* Here are the results of unrolling the loop the second time:

Double Unrolled

Language Straight Time Time Time Savings
O 1.75 101 42%

Java 1.01 0.581 43%

PHP 5.33 3.70 31%

Python 2.51 2.79 -12%

Note: Benchmarked for the case in which count equals 100.

* The results indicate that further loop unrolling can result in further
time savings, but not necessarily so, as the Java measurement shows.

Loops — Unrolling

* When you look at the previous code, you might not think it looks
incredibly complicated, but when you see the performance gain, you
can appreciate the tradeoff between performance and readability.

Loops — Minimizing the Work Inside Loops

* One key to writing effective loops is to minimize the work done inside
a loop.

* If you can evaluate a statement or part of a statement outside a loop
so that only the result is used inside the loop, do so.

* It’s good programming practice, and in some cases it improves
readability.

Loops — Minimizing the Work Inside Loops

* Suppose you have a complicated pointer expression inside a loop:

C++ Example of a Complicated Pointer Expression Inside a Loop

for (1 = 0; 1 < rateCount; 1++) {
netRate[1] = baseRate[1] * rates->discounts->factors->net;

}

Loops — Minimizing the Work Inside Loops

* In this case, assigning the complicated pointer expression to a well-

named variable improves readability and often improves
performance.

C++ Example of Simplifying a Complicated Pointer Expression
quantityDiscount = rates->discounts->factors->net;
for (1 = 0; 1 < rateCount; i++) {

netRate[1] = baseRate[1] * quantityDiscount;

}

Loops — Minimizing the Work Inside Loops

* The extra variable, quantityDiscount, makes it clear that the baseRate
array is being multiplied by a quantity-discount factor to compute the
net rate.

* That wasn’t at all clear from the original expression in the loop.

* Putting the complicated pointer expression into a variable outside the
loop also saves the pointer accesses for each pass through the loop,

resulting in the following savings:

Loops — Sentinel Values

Sentinel value

From Wikipedia, the free encyclopedia

Not to be confused with sentinel node.

In computer programming, a sentinel value (also referred to as a flag value, trip
value, rogue value, signal value, or dummy data)!" is a special value in the context
of an algorithm which uses its presence as a condition of termination, typically in a

loop or recursive algorithm.

Loops — Sentinel Values

found = FALSE;

. 1 = 0;
* Anything wrong? while ((!found) & (i < count)) §

if (item[i] == testvalue) {
found = TRUE;

}

else {
1++;

}

}

if (found) {

Loops — Sentinel Values

* |n this code, each iteration of the loop
tests for !found and for i < count.

* The purpose of the /found test is to C# Example of Compound Tests in a Search Loop
determine when the desired element has [ound = FALSE:
been found. Here's the compound test. - while ((!found) & (i < count)) {
if (item[i] == testvalue) {
* The purpose of the i < count test is to } found = TRUE;
avoid running past the end of the array. else {
Inside the loop, each value of item[] is .
tested individually, so the loop really has }

three tests for each iteration. if ¢ found) {

Loops — Sentinel Values

* In this kind of search loop, you can combine the three tests so that
you test only once per iteration by putting a “sentinel” at the end of
the search range to stop the loop.

* In this case, you can simply assign the value you’re looking for to the
element just beyond the end of the search range. (Remember to
leave space for that element when you declare the array.)

* You then check each element, and if you don’t find the element until
you find the one you stuck at the end, you know that the value you’re

looking for isn’t really there.

Loops — Sentinel Values

C# Example of Using a Sentinel Value to Speed Up a Loop

// set sentinel value, preserving the original value
initialvalue = item[count];

Remember to allow space | item[count] = testvalue;
for the sentinel value at the

end of the array. i = 0;
while (item[i] != testvalue) {
T4+
}

// check if value was found
if (1 < count) {

Loops — Sentinel Values

* When item is an array of integers, the savings can be dramatic:

Code-Tuned Time
Language Straight Time Time Savings
C# 0.771 0.590 23%
Java 1.63 0.912 44%
Visual Basic 1.34 0.470 65%

Note: Search is of a 100-element array of integers.

Loops — Sentinel Values

* The Visual Basic results are particularly dramatic, but all the results

are good. When the kind of array changes, however, the results also
change.

* When item is an array of single-precision floating-point numbers, the
results are as follows:

Language Straight Time Code-Tuned Time Time Savings
C# 1.351 1.021 24%
Java 1.923 1.282 33%
Visual Basic 1.752 1.011 42%

Note: Search is of a 100-element array of 4-byte floating-point numbers.

Loops
* The total number of loop executions?

for (column = 0; column < 100; column++) {
for (row = 0; row < 5; row++) {
sum = sum + table[row][column];

Loops — Putting the Busiest Loop on the Inside

* When you have nested loops, think about which loop you want on
the outside and which you want on the inside. Following is an
example of a nested loop that can be improved:

Java Example of a Nested Loop That Can Be Improved

for (column = 0; column < 100; column++) {
for (row 0O; row < 5; row++) {
sum = sum + table[row][column];

¥

Loops — Putting the Busiest Loop on the Inside

* The key to improving the loop is that the outer loop executes much
more often than the inner loop.

* Each time the loop executes, it has to initialize the loop index,
increment it on each pass through the loop, and check it after each
pass.

Language Straight Time Code-Tuned Time Time Savings
C++ 4.75 3.19 33%
Java 5.39 3.56 34%
PHP 4.16 3.65 12%

Python 3.48 3.33 4%

Loops

* Any comments on the performance?

* How can we run it faster?

Visual Basic Example of Multiplying a Loop Index
For 1 = 0 to saleCount - 1

commission(1) = (1 + 1) * revenue * baseCommission * discount
Next

Loops — Strength Reduction

* Reducing strength means replacing an expensive operation such as
multiplication with a cheaper operation such as addition.

* Sometimes you’ll have an expression inside a loop that depends on
multiplying the loop index by a factor.

* Addition is usually faster than multiplication, and if you can compute
the same number by adding the amount on each iteration of the loop

rather than by multiplying, the code will typically run faster.

Loops — Strength Reduction

Visual Basic Example of Multiplying a Loop Index

For 1 = 0 to saleCount - 1

commission(1) = (1 + 1) * revenue * baseCommission * discount
Next

Visual Basic Example of Adding Rather Than Multiplying

incrementalCommission = revenue * baseCommission

cumulativeCommission = incrementalCommission
For 1 = 0 to saleCount - 1

commission(1) = cumulativeCommission
cumulativeCommission =
Next

* discount

cumulativeCommission + incrementalCommission

Loops — Strength Reduction

* The key is that the original multiplication has to depend on the loop
index. In this case, the loop index was the only part of the expression
that varied, so the expression could be recoded more economically.

Language Straight Time Code-Tuned Time Time Savings
C++ 4.33 3.80 12%
Visual Basic 3.54 1.80 49%

Note: Benchmark performed with saleCount equals 20. All computed variables are floating point.

Data Transformations

* Changes in data types can be a powerful aid in reducing program size
and improving execution speed.

* Data-structure design is outside the scope of this course, but modest
changes in the implementation of a specific data type can also
improve performance.

* Here are a few ways to tune your data types.

Data Transformations — Integers over Floats

e Integer addition and multiplication tend to be faster than floating
point.

* Changing a loop index from a floating point to an integer, for example,
can save time:

Dim X As Single Dim 1 As Integer
For x = 0 to 99 For 1 = 0 to 99
a(x) =0 a1) =0

Next NeXtT
Code-Tuned Time
Language Straight Time Time Savings
C++ 2.80 0.801 71%
PHP 5.01 4.65 7%

Visual Basic 6.84 0.280 96%

Data Transformations

* How can we change and use this 2D array as 1D?

Java Example of a Standard, Two-Dimensional Array Initialization
for (row = 0; row < numRows; row++) {

for (column = 0; column < numColumns; column++) {
matrix[row][column] = 0;

¥

Data Transformations — Fewer Array Dims

* Multiple dimensions on arrays are expensive.

* If you can structure your data so that it’s in a one-dimensional array
rather than a two-dimensional or three-dimensional array, you might

be able to save some time.

e Suppose you have initialization code like this:

Java Example of a Standard, Two-Dimensional Array Initialization

for (row = 0; row < numRows; row++) {
for (column = 0; column < numColumns; column++) {

matrix[row][column] = 0;

¥

Data Transformations — Fewer Array Dims

* When this code is run with 50 rows and 20 columns, it takes twice as
long with a Java compiler as when the array is restructured so that it’s
one-dimensional.

Java Example of a One-Dimensional Representation of an Array

for (entry = 0; entry < numRows * numColumns; entry++) {
matrix[entry] = O;

¥

Data Transformations — Fewer Array Dims

* Here’s a summary of the results, with the addition of comparable
results in several other languages:

Code-Tuned Time

Language Straight Time Time Savings
C++ 8.75 7.82 11%
C# 3.28 2.99 9%
Java 7.78 4.14 47 %
PHP 6.24 4.10 34%
Python 3.31 2.23 32%

Visual Basic 943 3.22 66%

Data Transformations — Less Array Refs

* In addition to minimizing accesses to doubly or triply dimensioned
arrays, it’s often advantageous to minimize array accesses.

* A loop that repeatedly uses one element of an array is a goo
candidate for the application of this technique.

C++ Example of Unnecessarily Referencing an Array Inside a Loop

for (discountType = 0; discountType < typeCount; discountType++) {
for (discountLevel = 0; discountLevel < levelCount; discountLevel++) {

rate[discountLevel] = rate[discountLevel] * discount[discountType];

¥

Data Transformations — Less Array Refs

* The reference to discount[discountType | doesn’t change when
discountlLevel changes in the inner loop.

* Consequently, you can move it out of the inner loop so that you’ll
have only one array access per execution of the outer loop rather
than one for each execution of the inner loop.

C++ Example of Moving an Array Reference Outside a Loop

for (discountType = 0; discountType < typeCount; discountType++) {
thisDiscount = discount[discountType];
for (discountLevel = 0; discountLevel < levelCount; discountLevel++) {
rate[discountLevel] = rate[discountLevel] * thisDiscount;

¥

Data Transformations — Less Array Refs

e Results vary significantly from compiler to compiler.

Language Straight Time Code-Tuned Time Time Savings
C++ 32.1 34.5 -7%
C# 18.3 17.0 7%
Visual Basic 23.2 184 20%

Note: Benchmark times were computed for the case in which typeCount equals 10 and /evelCount equals 100.

Data Transformations — Use Supplm Indexes

* Using a supplementary index means adding related data that makes
accessing a data type more efficient.

* You can add the related data to the main data type, or you can store it
in a parallel structure

Data Transformations — Use Supplm Indexes

String-Length Index

* One example of using a supplementary index can be found in the different
string-storage strategies.

* In C, strings are terminated by a byte that’s set to 0.

* To determine the length of a string in C, a program has to start at the beginning of
the string and count each byte until it finds the byte that’s set to 0.

* |[n Visual Basic string format, a length byte hidden at the beginning of each
string indicates how long the string is.
e To determine the length of a Visual Basic string, the program just looks at the length

byte. Visual Basic length byte is an example of augmenting a data type with an index
to make certain operations—like computing the length of a string—faster.

Data Transformations — Use Supplm Indexes

String-Length Index

* You can apply the idea of indexing for length to any variable-length
data type.

* It’s often more efficient to keep track of the length of the structure
rather than computing the length each time you need it.

Data Transformations — Use Caching

e Caching means saving a few values in such a way that you can retrieve
the most commonly used values more easily than the less commonly
used values.

* If a program randomly reads records from a disk, for example, a
routine might use a cache to save the records read most frequently.

* When the routine receives a request for a record, it checks the cache
to see whether it has the record. If it does, the record is returned
directly from memory rather than from disk.

Data Transformations — Use Caching

* In addition to caching records on disk, you can apply caching in other
areas.

* In a Microsoft Windows font-proofing program, the performance
bottleneck was in retrieving the width of each character as it was
displayed.

* Caching the most recently used character width roughly doubled the
display speed

Data Transformations — Use Caching

* You can cache the results of time-consuming computations too—
especially if the parameters to the calculation are simple.

e Suppose, for example, that you need to compute the length of the
hypotenuse of a right triangle, given the lengths of the other two
sides. The straightforward implementation:

Java Example of a Routine That's Conducive to Caching

double Hypotenuse(
double sideA,
double sideB
) 1
return Math.sqrt((sideA * sideA) + (sideB * sideB));

¥

Data Transformations — Use Caching

Java Example of Caching to Avoid an Expensive Computation

° If you knOW that the same private double cachedHypotenuse = 0;

private double cachedsideA = 0;

Values tend to be reqUESted private double cachedSideB

= 0;
repeatedly, yOU can CaChe public double Hypotenuse(
. double sideA,
values this way: Folle S
) {

// check to see if the triangle is already in the cache
if ((sideA == cachedSideA) & (sideB == cachedSideB)) {
return cachedHypotenuse;

}

// compute new hypotenuse and cache it

cachedHypotenuse = Math.sqrt((sideA * sideA) + (sideB * sideB));
cachedsideA = sideA;

cachedsideB sideB;

return cachedHypotenuse;

Data Transformations — Use Caching

* The second version of the routine is more complicated than the first
and takes up more space, so speed has to be at a premium to justify
it. Many caching schemes cache more than one element, so they have
even more overhead. Here’s the speed difference:

Code-Tuned Time

Language Straight Time Time Savings
C++ 4.06 1.05 74%
Java 2.54 1.40 45%
Python 8.16 4.17 49%
Visual Basic 24.0 12.9 47%

Note: The results shown assume that the cache is hit twice for each time it's set.

Data Transformations — Use Caching

* The success of the cache depends on the relative costs of accessing a cached
element, creating an uncached element, and saving a new element in the cache.

* Success also depends on how often the cached information is requested. In some
cases, success might also depend on caching done by the hardware.

* Generally, the more it costs to generate a new element and the more times the
same information is requested, the more valuable a cache is. The cheaperitis to
access a cached element and save new elements in the cache, the more valuable

a cache is.

* As with other optimization techniques, caching adds complexity and tends to be
error-prone.

Expressions

* Much of the work in a program is done inside mathematical or logical
expressions.

* Complicated expressions tend to be expensive, so this section looks
at ways to make them cheaper.

Expressions — Exploit Algebraic Identities

* You can use algebraic identities to replace costly operations with cheaper ones.

* For example, the following expressions are logically equivalent:

hot a and not b
hot (a or b)

* |f you choose the second expression instead of the first, you can save a not
operation.

* Although the savings from avoiding a single not operation are probably
inconsequential, the general principle is powerful.

Expressions — Exploit Algebraic Identities

* For example, a program on whether sqgrt(x) < sgrt(y). Since sqrt(x) is
less than sgrt(y) only when x is less than y, you can replace the first
test with x < y.

* Given the cost of the sqgrt() routine, you’'d expect the savings to be
dramatic, and they are. Here are the results:

Code-Tuned Time

Language Straight Time Time Savings
C++ 743 0.010 99.9%
Visual Basic 4.59 0.220 95%

Python 421 0.401 90%

Expressions — Use Strength Reduction

 Strength reduction means replacing an expensive operation with a
cheaper one. Here are some possible substitutions:
* Replace multiplication with addition.

Replace exponentiation with multiplication.

Replace floating-point numbers with fixed-point numbers or integers.

Replace double-precision floating points with single-precision numbers.

Replace integer multiplication-by-two and division-by-two with shift
operations.

Expressions — Use Strength Reduction

e Suppose you have to evaluate a polynomial. If you’re rusty on
polynomials, they’re the things that look like Ax? + Bx + C.

* The letters A, B, and C are coefficients, and x is a variable. General
code to evaluate an nth-order polynomial looks like this:

Visual Basic Example of Evaluating a Polynomial
value = coefficient(0)
For power = 1 To order

value = value + coefficient(power) * x"power
Next

Expressions — Use Strength Reduction

* One solution would be to replace the exponentiation with a

multiplication on each pass through the loop, which is analogous to
the strength-reduction case a few sections ago in which a

multiplication was replaced with an addition.

Visual Basic Example of a Reduced-Strength Method of Evaluating a Polynomial
value = coefficient(0)
powerofX = x
For power = 1 to order
value = value + coefficient(power) * powerofX

powerofX = powerofX * x
NeXxtT

Expressions — Use Strength Reduction

* This produces a noticeable advantage if you’re working with second-

order polynomials—that is, polynomials in which the highest-power
term is squared—or higher-order polynomials:

Code-Tuned Time
Language Straight Time Time Savings

Python 3.24 2.60 20%
Visual Basic 6.26 0.160 97%

Expressions

 Compute the base-two logarithm of an integer, truncated to the
nearest integer.

unsigned 1nt LogZ2(unsigned 1nt x) {
return (unsigned int) (log(x) / log(C 2));

¥

* Any suggestion to improve its performance?

Expressions — Initialize at Compile Time

* If you're using a named constant or a magic number in a routine call and it’s the
only argument, that’s a clue that you could precompute the number, put it into a
constant, and avoid the routine call.

* The same principle applies to multiplications, divisions, additions, and other
operations.

* For example, compute the base-two logarithm of an integer, truncated to the
nearest integer. If the system doesn’t have a log- base-two routine, a quick and
easy approach:

C++ Example of a Log-Base-Two Routine Based on System Routines

unsigned int Log2(unsigned int x) {
return (unsigned int) (log(x) / log(2));

¥

Expressions — Initialize at Compile Time

 This routine is very slow, and because the value of log(2) never

changed, replace log(2) with its computed value, 0.69314718, like
this:

C++ Example of a Log-Base-Two Routine Based on a System Routine and a Constant
const double LOG2 = 0.69314718;

unsigned int Log2(unsigned int x) {
return (unsigned int) (log(x) / LOGZ);
h

Expressions — Initialize at Compile Time

* Since log() tends to be an expensive routine—much more expensive
than type conversions or division—you’d expect that cutting the calls
to the log() function by half would cut the time required for the

routine by about half.

Language Straight Time Code-Tuned Time Time Savings
C++ 9.66 5.97 38%
Java 17.0 12.3 28%

PHP 245 1.50 39%

Expressions — Be Wary of System Routines

e System routines are expensive and provide accuracy that’s often
wasted.

 Typical system math routines, for example, are designed to put an
astronaut on the moon within 2 feet of the target. If you don’t need
that degree of accuracy, you don’t need to spend the time to compute
it either.

Expressions — Be Wary of System Routines

e |In the previous examp|e’ the C++ Example of a Log-Base-Two Routine Based on Integers

unsigned int Log2(unsigned int x) {

Log2() routine returned an iF (x <2) return 0
integer value but used a ii E x < 4 3 return 1 ;

. . . 1 X < 8 return 2 ;
floating-point log() routine if (x < 16) return 3 -
to Compute |t if (x < 32) return 4 ;

if (x < 64) return 5 ;
* That was problematic for an if (x < 128) return 6 ;
integer result, so write a 1T U x < 236) return 7
’ if (x < 512) return 8 ;
series of integer tests that if (x < 1024) return 9 ;
were perfectly accurate for T

calculating an integer log2. return 31 ;

Expressions — Be Wary of System Routines

* This routine uses integer operations, never converts to floating point,

and blows the doors off both floating-point versions:

Code-Tuned Time
Language Straight Time Time Savings
C++ 9.66 0.662 93%
Java 17.0 0.882 95%
PHP 2.45 3.45 -41%

Expressions — Be Wary of System Routines

* Another option is to take advantage of the fact that a right-shift
operation is the same as dividing by two.

* The number of times you can divide a number by two and still have a
nonzero value is the same as the log2 of that number.

C++ Example of an Alternative Log-Base-Two Routine Based on the
Right-Shift Operator
unsigned int Log2(unsigned int x) {
unsigned int 1 = O;
while ((x = (x> 1)) !'=0) {
1++;
}

return 1 ;

Expressions — Be Wary of System Routines

* To non-C++ programmers, this code is particularly hard to read. The
complicated expression in the while condition is an example of a

coding practice you should avoid unless you have a good reason to
use it.

* This example highlights the value of not stopping after one successful
optimization. The first optimization earned a respectable 30-40

percent savings but had nowhere near the impact of the second or
third optimizations.

Expressions — Precompute Results

* A common low-level design decision is the choice of whether to
compute results on the fly or compute them once, save them, and
look them up as needed.

* If the results are used many times, it’s often cheaper to compute
them once and look them up the rest of the time.

Expressions — Precompute Results

* At the simplest level, you might compute part of an expression
outside a loop rather than inside.

* At a more complicated level, you might compute a lookup table once
when program execution begins, using it every time thereafter, or you
might store results in a data file or embed them in a program.

Expressions — Precompute Results

* Any performance improvement suggestion?

double computePayments/(
int months,
double interestRate

) A

for (Tong ToanAmount = MIN_LOAN_AMOUNT; loanAmount < MAX_LOAN_AMOUNT;

ToanAmount++) {

payment = loanAmount / (
(1.0 - math.pow(1.0+(interestRate/12.0), - months)) /

(interestRate/12.0)
);

Expressions — Precompute Results

Java Example of Precomputing the Second Complex Computation

double ComputePayments(
int months,
double interestRate
) {
Tong ToanAmount;
» | double divisor = (1.0 - Mmath.pow(1.0+(interestRate/12.0). - months)) /
[: (interestRate/12.0);
for (Tong ToanAmount = MIN_LOAN_AMOUNT; loanAmount <= MAX_LOAN_AMOUNT;
ToanAmount++) {
payment = loanAmount / divisor;

Expressions — Precompute Results

* This is similar to the techniques suggested earlier of putting array
references and pointer dereferences outside a loop.

* The results for Java in this case are comparable to the results of using
the precomputed table in the first optimization:

Code-Tuned Time
Language Straight Time Time Savings

Java 7.43 0.24 97%
Python 5.00 1.69 66%

Expressions — Precompute Results

e Optimizing a program by pre-computation can take several forms:

Computing results before the program executes, and wiring them into constants that are assigned
at compile time

Computing results before the program executes, and hard-coding them into variables used at run
time

Computing results before the program executes, and putting them into a file that’s loaded at run
time

Computing results once, at program startup, and then referencing them each time they’re needed
Computing as much as possible before a loop begins, minimizing the work done inside the loop

Computing results the first time they’re needed, and storing them so that you can retrieve them
when they’re needed again

Expressions — Eliminate Common Subexpressions

* If you find an expression that’s repeated several times, assign it to a

variable and refer to the variable rather than recomputing the
expression in several places.

* The loan-calculation example has a common subexpression that you
could eliminate. This is the original code:

Java Example of a Common Subexpression
payment = lToanAmount / (

(1.0 - math.pow(1.0 + (interestRate / 12.0), -months)) /
(interestRate / 12.0)

e

Expressions — Eliminate Common Subexpressions

* You can assign interestRate/12.0 to a variable that is then referenced
twice rather than computing the expression twice.

* If you have chosen the variable name well, this optimization can
improve the code’s readability at the same time that it improves
performance.

Java Example of Eliminating a Common Subexpression

monthlyInterest = interestRate / 12.0;

payment = loanAmount / (
(1.0 - math.pow(1.0 + monthlyInterest, -months)) /
monthlyInterest

)

Expressions — Eliminate Common Subexpressions

* The savings in this case don’t seem impressive:

Language Straight Time Code-Tuned Time Time Savings

Java 2.94 2.83 4%
Python 391 3.94 -1%

Code Refactoring

Refactoring

* Modifying software to improve its readability, maintainability, and
extensibility without changing what it actually does.
» External behavior does NOT change

* Internal structure is improved

It means I'm rewriting
it the way it should have
been written in the first place,
but it sounds cooler.

Just a second,
Will. I'm refactoring some What does that mean?
of my code.

Mercutio, do you
have a minute?

Refactoring

* It is a disciplined way to clean up code that minimizes the chances of
introducing bugs.

* In essence when you refactor you are improving the design of the
code after it has been written.
* In software development, we design first then we code

» Refactoring is the opposite of this practice: take a bad design, and rework it
into well-designed code

Refactoring

* Each step is simple

* move a field from one class to another,
* pull some code out of a method to make into its own method, and
* push some code up or down a hierarchy

* Yet the cumulative effect of these small changes can radically improve
the design.

Composing Methods — Extract Method

* You have a code fragment that can be grouped together.

e Turn the fragment into a method whose name explains the purpose
of the method.

void printOwing (double amount) {
printBanner () ;
printDetails (amount) ;

//print details |

System.out.println ("name:" + name); : : :

Y b . (" w) vold printDetails (double amount) ({
System.out.println ("amount" + amount) ;

System.out.println ("name:" + name);
System.out.println ("amount" + amount);

void printOwing (double amount) {
printBanner () ;

Composing Methods — Extract Method

Motivation

* Method is too long or code that needs a comment to understand its
purpose. Then turn that fragment of code into its own method.

e Prefer short, well-named methods for several reasons:

* First, it increases the chances that other methods can use a method when the
method is finely grained.

* Second, it allows the higher-level methods to read more like a series of
comments. Overriding also is easier when the methods are finely grained.

Composing Methods — Extract Method

Mechanics

e Create a new method, and name it after the intention of the method
(name it by what it does, not by how it does it).

* Copy the extracted code from the source method into the new target
method.

e Scan the extracted code for references to any variables that are local
in scope to the source method. These are local variables and
parameters to the method.

Composing Methods — Extract Method

Mechanics (cont.)

* See whether any temporary variables are used only within this
extracted code. If so, declare them in the target method as temporary
variables.

* Look to see whether any of these local-scope variables are modified
by the extracted code.

* |f one variable is modified, see whether you can treat the extracted code as a
guery and assign the result to the variable concerned.

Composing Methods — Extract Method

Mechanics (cont.)

* Pass into the target method as parameters local-scope variables that
are read from the extracted code.

* Replace the extracted code in the source method with a call to the
target method

Composing Methods — Extract Method

void printOwing () {

Enumeration e = orders.elements();
double outstanding = 0.0;

// print banner

System.out.println ("**************************") :
System.out.println ("***** Customer Owesg *X*x*xxki) -
System.out.println ("**************************") :

// calculate outstanding

while (e.hasMoreElements()) {
Order each = (Order) e.nextElement ()
outstanding += each.getAmount () ;

}

//print details
System.out.println ("name:"™ + name);
System.out.println ("amount" + outstanding);

Composing Methods — Extract Method

void printOwing () {

° Example: NO Local Variables Enumeration e = orders.elements();

double outstanding = 0.0;

* Extract the code that prints the printBanner () ;
banner. Just cut, paste, and put // calculate outstanding

. while (e.hasMoreElements()) {
d Ca”. Order each = (Order) e.nextElement ();
outstanding += each.getAmount () ;

}

//print details
System.out.println ("name:" + name);

System.out.println ("amount" + outstanding);

void printBanner () {
// print banner
System.out.println ("**************************") ;

System.out.println ("***** Customer Owes ***x**x*');
System.out.println (Mx**xkkkkkkkkkkkkkkkkkkkkkkx") -

Composing Methods — Extract Method

Example: Using Local Variables

* The problem is local variables: parameters passed into the original
method and temporaries declared within the original method.

* The easiest case with local variables is when the variables are read
but not changed.
* |In this case, can just pass them as parameters

Composing Methods — Extract Method

Example: Using Local

. void printOwing () {
Variables
_ _] Enumeration e = orders.elements();

e Extract the printing of details double outstanding = 0.0;

with a method with one printBanner () ;

parameter: // calculate outstanding

while (e.hasMoreElements()) {
Order each = (Order) e.nextElement ()

outstanding += each.getAmount () ;

//print details
System.out.println ("name:" + name);

System.out.println ("amount" + outstanding):;

Composing Methods — Extract Method

Example: Using Local
Variables

e extract the printing of details
with a method with one
parameter:

volid printOwing () {

Enumeration e = orders.elements();
double outstanding = 0.0;

printBanner () ;

// calculate outstanding

while (e.hasMoreElements()) {
Order each = (Order) e.nextElement ()
outstanding += each.getAmount () ;

}

printDetails (outstanding) ;

void printDetails (double outstanding) {
System.out.println ("name:" + name);

System.out.println ("amount" + outstanding);

Composing Methods — Extract Method

Example: Reassigning a Local Variable

* |t's the assignment to local variables that becomes complicated. In this
case we're only talking about temps.

* For temps that are assigned to, there are two cases:

* The simpler case is that in which the variable is a temporary variable used only within
the extracted code. When that happens, you can move the temp into the extracted
code.

 The other case is use of the variable outside the code. If the variable is not used after
the code is extracted, you can make the change in just the extracted code.

Composing Methods — Extract Method

Example: Reassigning a Local
Variable

e If it is used afterward, you need
to make the extracted code
return the changed value of the
variable.

vold printOwing () {

Enumeration e = orders.elements();
double outstanding = 0.0;

printBanner () ;
// calculate outstanding

while (e.hasMoreElements ()) {
Order each = (Order) e.nextElement () ;

outstanding += each.getAmount () ;

printDetails (outstanding) ;

Composing Methods — Extract Method

Example: Reassighing a Local
Variable

* |f it is used afterward, you need
to make the extracted code
return the changed value of the
variable.

 The enumeration variable is
used only in the extracted
code, so | can move it entirely
within the new method.

void printOwing () {
printBanner () ;
double outstanding = getOutstanding() ;
printDetails (outstanding) ;

double getOutstanding () {
Enumeration e = orders.elements();
double outstanding = 0.0;
while (e.hasMoreElements ()) {
Order each = (Order) e.nextElement();

outstanding += each.getAmount () ;

}

return outstanding;

Composing Methods — Extract Method

Example: Reassighing a Local Variable

* Rename the returned value if required:

double getOutstanding () {

Enumeration e = orders.elements();
double result = 0.0;
while (e.hasMoreElements()) {

Order each = (Order) e.nextElement() ;

result = each.getAmount () ;
}

return result;

Composing Methods — Extract Method

Example: Reassigning a

Local Variable void printOwing (double previousAmount) {
 If something more Enumeration e = orders.elements();
involved happens to the
variable, have to pass in printBanner () ;
the previous value as a // calculate outstanding
paran1eter while (e.hasMoreElements()) {
) Order each = (Order) e.nextElement () ;

outstanding += each.getAmount () ;
}

printDetails (outstanding) ;

Composing Methods — Extract Method

vold printOwing (double previousAmount) ({
Example: ReaSSigninga double outstanding = previousAmount * 1.2;

Local Variable printBanner () ;
outstanding getOutstanding (outstanding) ;

printDetails (outstanding) ;

* |n this case, the
extraction would look

. . double getOutstanding(double initialValue
like this: | I {

double resu = 1nitialValue;
Enumeration e = orders.elements();
while (e.hasMoreElements()) {
Order each = (Order) e.nextElement() ;

result += each.getAmount () ;
}

return result;

Composing Methods — Replace Temp with Query

i i double basePrice = quantity * itemPrice;
* You are using a temporary variable to ¢? esarsice 5 1G0T

hold the result of an expression. return basePrice * 0.95;

else
return basePrice * 0.98;

e Extract the expression into a
method.

* Replace all references to the temp
with the expression. The new it (basePrice() > 1000)

return basePrice() * 0.95;

method can then be used in other else .
return basePrice() * 0.98;
methods.

double basePrice () {

return quantity * itemPrice;

}

Composing Methods — Replace Temp with Query

Motivation

* The problem with temps is that they are temporary and local.
Because they can be seen only in the context of the method in which
they are used, temps tend to encourage longer methods, because
that's the only way you can reach the temp.

* By replacing the temp with a query method, any method in the class
can get at the information. That helps a lot in coming up with cleaner
code for the class.

Composing Methods — Replace Temp with Query

Mechanics

* Look for a temporary variable that is assigned to once.
* |f a temp is set more than once consider Split Temporary Variable

* Declare the temp as final.
* This will ensure that the temp is only assigned to once

* Extract the right-hand side of the assignment into a method.

* Initially mark the method as private. You may find more use for it later, but you
can easily relax the protection later.

Composing Methods — Replace Temp with Query
* Example: Start with a simple method

double getPrice () {
int basePrice = quantity * i1temPrice;
double discountFactor;
1f (basePrice > 1000) discountFactor = 0.95;
else discountFactor = 0.98;
return basePrice * discountFactor;

Composing Methods — Replace Temp with Query

Example
* I'm inclined to replace both temps, one at a time.

* Although it's pretty clear in this case, | can test that they are assigned
only to once by declaring them as final

double getPrice () {
final int basePrice = quantity * itemPrice;
final double discountFactor;
if (basePrice > 1000) discountFactor = 0.95;
else discountFactor = 0.98;

return basePrice * discountFactor;

Composing Methods — Replace Temp with Query

Example

* Compiling will then alert me to any problems. | do this first, because if
there is a problem, | shouldn't be doing this refactoring.

* | replace the temps one at a time. First | extract the right-hand side of
the assighment: double getPrice() {

final int basePrice = basePrice() ;
final double discountFactor;

if (basePrice > 1000) discountFactor = 0.95;

else discountFactor = 0.98;
return basePrice * discountFactor;

}

private int basePrice() {
return. qguantity * itemPrice;

}

Composing Methods — Replace Temp with Query

Example

* First | replace the first reference to the temp:

double getPrice () {
final int basePrice = basePrice();

final double discountFactor;

if (basePrice() > 1000) discountFactor = 0.95;
else discountFactor = 0.98;

return basePrice * discountFactor;

Composing Methods — Replace Temp with Query

Example
* Do the next. Also remove the temp declaration:

double getPrice () {
final double discountFactor;
if (basePrice() > 1000) discountFactor = 0.95;

else discountFactor = 0.98;
return basePrice() * discountFactor;

Composing Methods — Replace Temp with Query

Example

* With that gone, can extract discountFactor in a similar way:

double getPrice () {
final double discountFactor = discountFactor () ;
return basePrice () * discountFactor;

}

private double discountFactor () {
1f (basePrice() > 1000) return 0.95;
else return 0.98;

Composing Methods — Replace Temp with Query

 Example

* See how it would have been difficult to extract discountFactor if | had
not replaced basePrice with a query.

* The getPrice method ends up as follows:

double getPrice () {

int basePrice = quantity * itemPrice;

double discountFactor; double getPrice () {

if (basePrice > 1000) discountFactor = 0.95; return basePrice() * discountFactor () ;
else discountFactor = 0.98; }

return basePrice * discountFactor;

Composing Methods — Introduce Explaining
Variable

* You have a complicated expression. Put the result of the expression,
or parts of the expression, in a temporary variable with a name that
explains the purpose.

if ((platform.toUpperCase() .indexOf ("MAC") > -1) &&
(browser.toUpperCase () .indexOf ("IE") > -1) &&
wasInitialized() && resize > 0)

// do something ‘

final boolean isMacOs = platform.toUpperCase () .indexOf ("MAC") >
-1;

final boolean isIEBrowser = browser.toUpperCase () .indexOf ("IE") >
_l;

final boolean wasResized = resize > 0;

if (isMacOs && isIEBrowser && wasInitialized () && wasResized) {

// do something
}

Composing Methods — Introduce Explaining
Vaariable

Motivation
* Expressions can become very complex and hard to read.

* In such situations temporary variables can be helpful to break down
the expression into something more manageable.

Composing Methods — Introduce Explaining
Vaariable

Mechanics

e Declare a final temporary variable, and set it to the result of part of
the complex expression.

* Replace the result part of the expression with the value of the temp.

* |f the result part of the expression is repeated, you can replace the repeats
one at a time.

e Repeat for other parts of the expression.

Composing Methods — Introduce Explaining
Variable

Example

 Start with a simple calculation:

double price () {
// price 1s base price - quantity discount + shipping
return quantity * itemPrice -
Math.max (0, quantity - 500) * itemPrice * 0.05 +
Math.min(quantity * 1itemPrice * 0.1, 100.0);

Composing Methods — Introduce Explaining
Variable

Example
e Simple: it may be, but can make it easier to follow.

* First | identify the base price as the quantity times the item price. |
can turn that part of the calculation into a temp:

double price () {
// price is base price - quantity discount + shipping
final double basePrice = quantity * itemPrice;

return basePrice -
Math.max (0, quantity - 500) * itemPrice * 0.05 +
Math.min(quantity * 1itemPrice * 0.1, 100.0);

Composing Methods — Introduce Explaining
Variable

Example

* Quantity times item price is also used later, so can substitute with the
temp there as well:

double price () {
// price is base price - quantity discount + shipping
final double basePrice = quantity * itemPrice;

return basePrice -
Math.max (0, quantity - 500) * itemPrice * 0.05 +
Math.min (basePrice * 0.1, 100.0);

Composing Methods — Introduce Explaining
Variable

Example

* Next | take the quantity discount:

double price() {
// price is base price - quantity discount + shipping
final double basePrice = quantity * itemPrice;

final double quantityDiscount = Math.max(0, quantity - 500) *
_itemPrice * 0.05;
return basePrice - quantityDiscount +
Math.min (basePrice * 0.1, 100.0);

Composing Methods — Introduce Explaining
Variable

Example

* Finally, | finish with the shipping. As do that, can remove the
comment, too, because now it doesn't say anything the code doesn’t

say:

double price () {

final double basePrice = quantity * 1i1temPrice;

final double quantityDiscount = Math.max (0, quantity - 500) *
_itemPrice * 0.05;
final double shipping = Math.min(basePrice * 0.1, 100.0);
return basePrice - quantityDiscount + shipping;

Composing Methods — Introduce Explaining
Variable

Example with Extract Method

e Start again:

double price () {
// price is base price - quantity discount + shipping
return quantity * itemPrice -
Math.max (0, quantity - 500) * itemPrice * 0.05 +

Math.min(quantity * 1itemPrice * 0.1, 100.0);

Composing Methods — Introduce Explaining
Variable

Example with Extract Method

double price () {
return basePrice () - quantityDiscount () + shipping():

}

private double quantityDiscount () {
return Math.max (0, quantity - 500) * itemPrice * 0.05;

}

private double shipping () {
return Math.min (basePrice() * 0.1, 100.0);

}

private double basePrice() {
return quantity * itemPrice;

}

Composing Methods — Introduce Explaining
Variable

Example with Extract Method

* When to use Introduce Explaining Variable? The answer is when
Extract Method is more effort.

 If I'min an algorithm with a lot of local variables, | may not be able to
easily use Extract Method. In this case | use Introduce Explaining
Variable to help me understand what is going on.

* As the logic becomes less tangled, | can always use Replace Temp with
Query later. The temp also is valuable if | end up having to use

Replace Method with Method Object.

Composing Methods — Split Temporary Variable

* You have a temporary variable assigned to more than once, but is not
a loop variable nor a collecting temporary variable.

* Make a separate temporary variable for each assignment.

double temp = 2 * (_height + width);
System.out.println (temp):;

temp = height * width;
System.out.println (temp):;

4

final double perimeter = 2 * (_height + width);
System.out.println (perimeter):;

final double area = height * width;
System.out.println (area);

Composing Methods — Split Temporary Variable

Motivation

 Temporary variables are made for various uses. Some of these uses
naturally lead to the temp's being assigned to several times.

* Loop variables change for each run around a loop (such as the i in for (int
i=0; i<10; i++). Collecting temporary variables collect together some value
that is built up during the method.

 Many other temporaries are used to hold the result of a long-winded bit of
code for easy reference later.

* These kinds of variables should be set only once. Otherwise, its purpose will
be confusing and it will be error-prone.

Composing Methods — Split Temporary Variable

Mechanics

* Change the name of a temp at its declaration and its first assighment.

* |f the later assignments are of the form i =i + some expression, that indicates that it is a collecting
temporary variable, so don't split it. The operator for a collecting temporary variable usually is
addition, string concatenation, writing to a stream, or adding to a collection.

Declare the new temp as final.

Change all references of the temp up to its second assignment.

Declare the temp at its second assignment

Repeat in stages, each stage renaming at the declaration, and changing references until
the next assignment.

Composing Methods — Remove Assignments to
Parameters

* The code assigns to a parameter.

* Use a temporary variable instead.

int discount (int inputVal, int quantity, int yearToDate) {
if (inputval > 50) inputval -= 2;

$

int discount (int inputVval, int quantity, int yearToDate) {
int result = inputVal;
if (inputval > 50) result -= 2;

Composing Methods — Remove Assignments to
Parameters

Motivation

* If you pass in an object named foo, in the parameter, assigning to the
parameter means to change foo to refer to a different object.

* The reason don't like this comes down to lack of clarity and to
confusion between pass by value and pass by reference

void aMethod (Object foo) {
foo.modifyInSomeWay () ; // that's OK
foo = anotherObject; // trouble and despair will follow
you

Composing Methods — Remove Assignments to
Parameters

Mechanics
* Create a temporary variable for the parameter.

* Replace all references to the parameter, made after the assignment,
to the temporary variable.

* Change the assignment to assign to the temporary variable.

Composing Methods — Remove Assignments to
Parameters

Example

e Start with the following simple routine:

int discount (int inputVal, int quantity, int yearToDate) {

if (inputval > 50) inputval -= 2;
if (quantity > 100) inputval -= 1;
i1f (yearToDate > 10000) 1inputvVal -= 4;

return inputVal;

Composing Methods — Remove Assignments to
Parameters

Example

* Replacing with a temp leads to

int discount (int inputVal, int quantity, int yearToDate) {

int result = inputval;

if (inputval > 50) result = 2;

if (quantity > 100) result -= 1;

if (yearToDate > 10000) result —-= 4;

return result;

Composing Methods — Remove Assignments to
Parameters

Example

* You can enforce this convention with the final keyword:

int discount (fimnal int inputVal, fimnal int quantity, final int
yearToDate) {

int result = inputVval;

if (inputval > 50) result -= 2;

if (quantity > 100) result -= 1;

i1f (yearToDate > 10000) result -= 4;

return result;

Composing Methods — Replace Method with
Method Object

* You have a long method that uses local variables in such a way that
you cannot apply Extract Method.

* Turn the method into its own object so that all the local variables
become fields on that object. You can then decompose the method
into other methods on the same object.

class Order...
double price () {
double primaryBasePrice;
double secondaryBasePrice;
double tertiaryBasePrice;
// long computation;

Composing Methods — Replace Method with
Method Object

Motivation

* The difficulty in decomposing a method lies in local variables. If they
are rampant, decomposition can be difficult.

* Using Replace Temp with Query helps to reduce this burden, but
occasionally you may find you cannot break down a method that
needs breaking.

* In this case you reach deep into the tool bag and get out your method
object

Composing Methods — Replace Method with
Method Object

Mechanics
* Create a new class, name it after the method.

* Give the new class a final field for the object that hosted the original
method (the source object) and a field for each temporary variable
and each parameter in the method.

* Give the new class a constructor that takes the source object and
each parameter.

* Give the new class a method named "compute."

Composing Methods — Replace Method with
Method Object

Mechanics (cont.)

* Copy the body of the original method into compute. Use the source
object field for any invocations of methods on the original object.

* Replace the old method with one that creates the new object and
calls compute.

* Because all the local variables are now fields, you can freely
decompose the method without having to pass any parameters.

Composing Methods — Replace Method with
Method Object

 Example

* A proper example of this requires a long chapter, so showing this
refactoring for a method that doesn't need it.

Class Account
int gamma (int inputVal, int quantity, int yearToDate) {

int importantValuel = (inputVal * quantity) + deltaf():;

int importantValue?Z2 = (inputVal * yearToDate) + 100;

1if ((yearToDate - importantValuel) > 100)
importantValue?2 -= 20;

int importantValue3 = importantValue2?2 * 7;

// and so on.
return importantValue3d - 2 * importantValuel;

Composing Methods — Replace Method with
Method Object

Example

 To turn this into a method object, | begin by declaring a new class. |
provide a final field for the original object and a field for each
parameter and temporary variable in the method.

class Gamma. ..
private final Account account;
private int inputVal; -
private int quantity;
private int yearToDate;
private int importantValuel;
private int importantValue2Z;
private int importantValue3;

Composing Methods — Replace Method with
Method Object

Example

e Add a constructor:

Gamma {(Account source, int inputValArg, int quantityArg, int
yearToDateArg) {

_account = source;
inputVal = 1nputValArg;
quantity = quantitvyArg;

yvyearToDate = yearToDateArg;

Composing Methods — Replace Method with
Method Object

Example

* Now can move the original method over; need to modify any calls of
features of account to use the account field

int compute () {
importantValuel = (inputVal * quantity) + _account.delta();
importantValue?2 = {(inputVal * yearToDate} + 100;
if ((yearToDate - importantValuel) > 100}
importantValue?2 —-= 20;
int i1mportantValue3 = importantValueZ2 * 7;
// and so on.
return importantValue3 - 2 * importantValuel;

Simplifying Conditional Expressions —
Decompose Conditional

* You have a complicated conditional (if-then-else) statement.

e Extract methods from the condition, then part, and else parts.

if (date.before (SUMMER START) || date.after (SUMMER END))
charge = quantity * winterRate + winterServiceCharge;
else charge = quantity * summerRate;

if (notSummer (date))
charge = winterCharge (quantity):;
else charge = summerCharge (quantity):

Simplifying Conditional Expressions —
Decompose Conditional

Motivation

* As with any large block of code, you can make your intention clearer by
decomposing it and replacing chunks of code with a method call named
after the intention of that block of code.

* With conditions you can receive further benefit by doing this for the
conditional part and each of the alternatives.

* This way you highlight the condition and make it clearly what you are
branching on.

* You also highlight the reason for the branching.

Simplifying Conditional Expressions —
Decompose Conditional

Mechanics

e Extract the condition into its own method.

* Extract the then part and the else part into their own methods.

Simplifying Conditional Expressions —
Decompose Conditional

if (date.before (SUMMER START)} || date.after (SUMMER END))
charge = quantity * winterRate + winterServiceCharge;
else charge = quantity * summerRate;

if (notSummer (date))
charge = winterCharge (quantity);
else charge = summerCharge (quantity);

private boolean notSummer (Date date) {
return date.before (SUMMER START) || date.after (SUMMER END) ;

}

private double summerCharge(int quantity) {
return quantity * summerRate;

}

private double winterCharge{int quantity) {
return quantity * winterRate + winterServiceCharge;

}

Simplifying Conditional Expressions —
Consolidate Conditional Expression

* You have a sequence of conditional tests with the same result.

* Combine them into a single conditional expression and extract it.

double disabilityAmount {} {
if (seniority < 2) return 0;
if (monthsDisabled > 12) return 0;
if (isPartTime} return 0;
// compute the disability amount

3

double disabilityAmount ()} {
if (isNotEligableForDisability()) return O;
// compute the disability amount

Simplifying Conditional Expressions —
Consolidate Conditional Expression

double getPayAmount {) {
double result;
if (isDead) result = deadAmount (};
else {
if (isSeparated) result
else {
if (isRetired) result = retiredAmount();
else result = normalPayAmount () ;

separatedAmount () ;

}:
}

return result;
| -

double getPayAmount ()} {

if (isDead) return deadAmount (};
if (isSeparated) return separatedAmount(};
if (isRetired) return retiredAmount();

return normal PayAmount () ;

}

Simplifying Conditional Expressions —
Consolidate Conditional Expression

public double getAdjustedCapital () {
double result = 0.0;
if (capital > 0.0) {
if (intRate > 0.0 && duration > 0.0) {
result = (income / _duration) * ADJ FACTOR;
}
}

return result;

}

public double getAdjustedCapital () {
if (capital <= 0.0) return 0.0;
if (intRate <= 0.0 || duration <= 0.0) return 0.0;
return (income / duration) * ADJ FACTOR;

