
SWEN 6301 Software Construction
Module 9: Software Evolution and Configuration

Management
Ahmed Tamrawi

Copyright notice: 1- care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.
2- many slides are adopted with permission from Ian Sommerville and Mustafa Misir ‘s lecture notes on Software Engineering course and Modern Software Development Technology course.

Software Evolution

Topics Covered

• Evolution processes

• Legacy systems

• Software maintenance

Software Change

• Software change is inevitable
• New requirements emerge when the software is used;
• The business environment changes;
• Errors must be repaired;
• New computers and equipment is added to the system;
• The performance or reliability of the system may have to be improved.

• A key problem for all organizations is implementing and managing change to
their existing software systems.

Importance of Evolution

• Organizations have huge investments in their software systems - they
are critical business assets.

• To maintain the value of these assets to the business, they must be
changed and updated.

• The majority of the software budget in large companies is devoted to
changing and evolving existing software rather than developing new
software.

Spiral Model of Development and Evolution

Evolution and Servicing

• Evolution
• The stage in a software system’s life cycle where it is in operational use and is

evolving as new requirements are proposed and implemented in the system.

• Servicing
• At this stage, the software remains useful but the only changes made are those

required to keep it operational i.e. bug fixes and changes to reflect changes in the
software’s environment. No new functionality is added.

• Phase-out
• The software may still be used but no further changes are made to it.

Software
development Software

evolution Software
servicing Software

retirement

Time

Evolution Processes

Evolution Processes

• Software evolution processes depend on
• The type of software being maintained;
• The development processes used;
• The skills and experience of the people involved.

• Proposals for change are the driver for system evolution.
• Should be linked with components that are affected by the change, thus

allowing the cost and impact of the change to be estimated.

• Change identification and evolution continues throughout the
system lifetime.

Change Identification and Evolution Processes

Change proposalsNew system

Change identification
process

Software evolution
process

Software Evolution Process

Release
planning

Change
implementation

System
release

Impact
analysis

Change
requests

Platform
adaptation

System
enhancementFault repair

Change Implementation

• Iteration of the development process where the revisions to the
system are designed, implemented and tested.

• A critical difference is that the first stage of change implementation
may involve program understanding, especially if the original system
developers are not responsible for the change implementation.

• During the program understanding phase, you have to understand
how the program is structured, how it delivers functionality and how
the proposed change might affect the program.

Requirements
updating

Software
development

Requirements
analysis

Proposed
changes

Urgent Change Requests

• Urgent changes may have to be implemented without going through
all stages of the software engineering process
• If a serious system fault has to be repaired to allow normal operation to

continue;
• If changes to the system’s environment (e.g. an OS upgrade) have unexpected

effects;
• If there are business changes that require a very rapid response (e.g. the

release of a competing product).

Modify
source code

Deliver modified
system

Analyze
source code

Change
requests

Agile Methods and Evolution

• Agile methods are based on incremental development so the
transition from development to evolution is a seamless one.
• Evolution is simply a continuation of the development process based on

frequent system releases.

• Automated regression testing is particularly valuable when changes
are made to a system.

• Changes may be expressed as additional user stories.

Handover Problems

• Where the development team have used an agile approach but the
evolution team is unfamiliar with agile methods and prefer a plan-
based approach.
• The evolution team may expect detailed documentation to support

evolution and this is not produced in agile processes.

• Where a plan-based approach has been used for development but
the evolution team prefer to use agile methods.
• The evolution team may have to start from scratch developing automated

tests and the code in the system may not have been re-factored and
simplified as is expected in agile development.

Legacy Systems

Legacy Systems

• Legacy systems are older systems that rely on languages and
technology that are no longer used for new systems development.

• Legacy software may be dependent on older hardware, such as
mainframe computers and may have associated legacy processes and
procedures.

• Legacy systems are not just software systems but are broader socio-
technical systems that include hardware, software, libraries and other
supporting software and business processes.

Elements of a Legacy System

System
hardware

Business
processes

Application
software

Business policies
and rules

Support
software

Application
 data

ConstrainsUsesUsesRuns-onRuns-on

Embeds
knowledge of

Uses

Legacy System Components

• System hardware Legacy systems may have been written for
hardware that is no longer available.

• Support software The legacy system may rely on a range of support
software, which may be obsolete or unsupported.

• Application software The application system that provides the
business services is usually made up of a number of application
programs.

• Application data These are data that are processed by the application
system. They may be inconsistent, duplicated or held in different
databases.

Legacy System Components

• Business processes These are processes that are used in the business
to achieve some business objective.

• Business processes may be designed around a legacy system and
constrained by the functionality that it provides.

• Business policies and rules These are definitions of how the business
should be carried out and constraints on the business. Use of the
legacy application system may be embedded in these policies and
rules.

Legacy System Replacement

• Legacy system replacement is risky and expensive so businesses
continue to use these systems

• System replacement is risky for a number of reasons
• Lack of complete system specification
• Tight integration of system and business processes
• Undocumented business rules embedded in the legacy system
• New software development may be late and/or over budget

Legacy System Change

• Legacy systems are expensive to change for a number of reasons:
• No consistent programming style
• Use of obsolete programming languages with few people available with these

language skills
• Inadequate system documentation
• System structure degradation
• Program optimizations may make them hard to understand
• Data errors, duplication and inconsistency

Legacy System Management

• Organisations that rely on legacy systems must choose a strategy for evolving
these systems
• Scrap the system completely and modify business processes so that it is no longer required;
• Continue maintaining the system;
• Transform the system by re-engineering to improve its maintainability;
• Replace the system with a new system.

• The strategy chosen should depend on the system quality and its business value.

Example of a Legacy System Assessment

• Low quality, low business value
• These systems should be scrapped.

• Low-quality, high-business value
• These make an important business contribution

but are expensive to maintain. Should be re-
engineered or replaced if a suitable system is
available.

• High-quality, low-business value
• Replace with COTS, scrap completely or maintain.

• High-quality, high business value
• Continue in operation using normal system

maintenance.

1
2

3 4
5

6
7

8
9

10

System quality

Bu
si

ne
ss

 v
al

ue

High business value
Low quality High business value

High quality

Low business value
Low quality

Low business value
High quality

System Measurement

• You may collect quantitative data to make an assessment of the
quality of the application system
• The number of system change requests; The higher this accumulated value,

the lower the quality of the system.
• The number of different user interfaces used by the system; The more

interfaces, the more likely it is that there will be inconsistencies and
redundancies in these interfaces.
• The volume of data used by the system. As the volume of data (number of

files, size of database, etc.) processed by the system increases, so too do the
inconsistencies and errors in that data.
• Cleaning up old data is a very expensive and time-consuming process

Software Maintenance

Software Maintenance

• Modifying a program after it has been put into use.

• The term is mostly used for changing custom software. Generic
software products are said to evolve to create new versions.

• Maintenance does not normally involve major changes to the
system’s architecture.

• Changes are implemented by modifying existing components and
adding new components to the system.

Types of Maintenance

• Fault repairs
• Changing a system to fix bugs/vulnerabilities and correct

deficiencies in the way meets its requirements.

• Environmental adaptation
• Maintenance to adapt software to a different operating

environment
• Changing a system so that it operates in a different

environment (computer, OS, etc.) from its initial
implementation.

• Functionality addition and modification
• Modifying the system to satisfy new

requirements.

Functionality addition
or modification

(58%)

Fault repair
(24%)

Environmental
adaptation

(19%)

Maintenance Costs

• Usually greater than development costs (2* to 100* depending on
the application).

• Affected by both technical and non-technical factors.

• Increases as software is maintained. Maintenance corrupts the
software structure so makes further maintenance more difficult.

• Ageing software can have high support costs (e.g. old languages,
compilers etc.).

Maintenance Costs

• It is usually more expensive to add new features to a system during
maintenance than it is to add the same features during development
• A new team has to understand the programs being maintained
• Separating maintenance and development means there is no incentive for the

development team to write maintainable software
• Program maintenance work is unpopular

• Maintenance staff are often inexperienced and have limited domain knowledge.

• As programs age, their structure degrades and they become harder to change

Maintenance Prediction

• Maintenance prediction is concerned with assessing which parts of the system
may cause problems and have high maintenance costs
• Change acceptance depends on the maintainability of the components affected by the

change;
• Implementing changes degrades the system and reduces its maintainability;
• Maintenance costs depend on the number of changes and costs of change depend on

maintainability.

Maintenance Prediction

Predicting
maintainability

Predicting system
changes

Predicting
maintenance

costs

What will be the lifetime
maintenance costs of this

system?

What will be the costs of
maintaining this system

over the next year?

What parts of the system
will be the most expensive

to maintain?

How many change
requests can be

expected?

What parts of the system are
most likely to be affected by

change requests?

Change Prediction

• Predicting the number of changes requires and understanding of the
relationships between a system and its environment.

• Tightly coupled systems require changes whenever the environment is changed.

• Factors influencing this relationship are
• Number and complexity of system interfaces;
• Number of inherently volatile system requirements;
• The business processes where the system is used.

Complexity Metrics

• Predictions of maintainability can be made by assessing the complexity of system
components.

• Studies have shown that most maintenance effort is spent on a relatively small
number of system components.

• Complexity depends on
• Complexity of control structures;
• Complexity of data structures;
• Object, method (procedure) and module size.

Process Metrics

• Process metrics may be used to assess maintainability
• Number of requests for corrective maintenance;
• Average time required for impact analysis;
• Average time taken to implement a change request;
• Number of outstanding change requests.

• If any or all of these is increasing, this may indicate a decline in
maintainability.

Software Reengineering

• Restructuring or rewriting part or all of a legacy system without changing its
functionality.

• Applicable where some but not all sub-systems of a larger system require
frequent maintenance.

• Reengineering involves adding effort to make them easier to maintain. The
system may be re-structured and re-documented.

Advantages of Reengineering

• Reduced risk
• There is a high risk in new software development. There may be development

problems, staffing problems and specification problems.

• Reduced cost
• The cost of re-engineering is often significantly less than the costs of

developing new software.

The Reengineering Process

Reverse
engineering

Program
documentation

Data
reengineering

Original data

Program
structure

improvement

Program
modularization

Restructured
program

Reengineered
data

Re-engineered
program

Original
program

Source code
translation

Convert code to
a new language

Analyze the program
to understand it

Restructure automatically
for understandability

Reorganize the
program structure

Clean-up and restructure
system data

Reengineering Approaches

Automated restructuring
with manual changes

Automated source
code conversion

Restructuring plus
architectural changes

Automated program
restructuring

Program and data
restructuring

Increased cost

Reengineering Cost Factors

• The quality of the software to be reengineered.

• The tool support available for reengineering.

• The extent of the data conversion which is required.

• The availability of expert staff for reengineering.
• This can be a problem with old systems based on technology that is no longer

widely used.

Refactoring

• Refactoring is the process of making improvements to a program to
slow down degradation through change.

• You can think of refactoring as ‘preventative maintenance’ that
reduces the problems of future change.

• Refactoring involves modifying a program to improve its structure,
reduce its complexity or make it easier to understand.

• When you re-factor a program, you should not add functionality but
rather concentrate on program improvement.

Refactoring and Reengineering

• Re-engineering takes place after a system has been maintained for
some time and maintenance costs are increasing. You use
automated tools to process and re-engineer a legacy system to create
a new system that is more maintainable.

• Refactoring is a continuous process of improvement throughout the
development and evolution process. It is intended to avoid the
structure and code degradation that increases the costs and
difficulties of maintaining a system.

Configuration Management

Topics Covered

• Version management

• System building

• Change management

• Release management

Configuration Management

• Software systems are constantly changing during development and
use.

• Configuration management (CM) is concerned with the policies,
processes and tools for managing changing software systems.

• You need CM because it is easy to lose track of what changes and
component versions have been incorporated into each system
version.

• CM is essential for team projects to control changes made by
different developers

Configuration Management Activities

• Version management
• Keeping track of the multiple versions of system components and ensuring that changes made to

components by different developers do not interfere with each other.

• System building
• The process of assembling program components, data and libraries, then compiling these to create an

executable system.

• Change management
• Keeping track of requests for changes to the software from customers and developers, working out the

costs and impact of changes, and deciding the changes should be implemented.

• Release management
• Preparing software for external release and keeping track of the system versions that have been

released for customer use.

Configuration Management Activities

Component
versions

Release
management

Change
proposals

System
releases

Change
management

System
versions

Version
management

System
building

Agile Development and CM

• Agile development, where components and systems are changed
several times per day, is impossible without using CM tools.

• The definitive versions of components are held in a shared project
repository and developers copy these into their own workspace.

• They make changes to the code then use system building tools to
create a new system on their own computer for testing. Once they are
happy with the changes made, they return the modified components
to the project repository.

Development Phases

• A development phase where the development team is responsible
for managing the software configuration and new functionality is
being added to the software.

• A system testing phase where a version of the system is released
internally for testing.
• No new system functionality is added. Changes made are bug fixes,

performance improvements and security vulnerability repairs.

• A release phase where the software is released to customers for use.
• New versions of the released system are developed to repair bugs and

vulnerabilities and to include new features.

Multi-version Systems

• For large systems, there is never just one ‘working’ version of a
system.

• There are always several versions of the system at different stages of
development.

• There may be several teams involved in the development of different
system versions.

Multi-version System Development

V1.0 V1.1 V1.2

Development
versions

V1.3 V1.4 V1.5

R1.0 R1.1

Releases

V2.1 V2.2 V2.3 V2.4

Pre-release
versions

Version 1

Version 2

Version 3

1

2

3

CM Terminology
Term Explanation

Baseline
A baseline is a collection of component versions that make up a system. Baselines are controlled, i.e., the versions of the
components making up the system cannot be changed. It is always possible to recreate a baseline from its constituent
components.

Branching The creation of a new code-line from a version in an existing code-line. Both may then develop independently.

Code-line A code-line is a set of versions of a software component and other configurations on which component depends.

Configuration
(version) control

The process of ensuring that versions of systems and components are recorded and maintained so that changes are
managed and all versions of components are identified and stored for the lifetime of the system.

Configuration item
Anything associated with a software project (design, code, test data, document, etc.) that has been placed under
configuration control. There are often different versions of a configuration item. Configuration items have a unique name.

Mainline A sequence of baselines representing different versions of a system.

Merging The creation of a new version of a software component by merging separate versions in different code-lines. These code-
lines may have been created by a previous branch of one of the code-lines involved.

Release A version of a system that has been released to customers (or other users in an organization) for use.
Repository A shared database of versions of software components and meta-information about changes to these components.

System building The creation of an executable system version by compiling and linking the appropriate versions of the components and
libraries making up the system.

Version An instance of a configuration item that differs, in some way, from other instances of that item. Versions always have a
unique identifier.

Workspace A private work area where software can be modified without affecting other developers who may be using or modifying
that software.

Version Management

Version Management

• Version management (VM) is the process of keeping track of different
versions of software components or configuration items and the
systems in which these components are used.

• It also involves ensuring that changes made by different developers to
these versions do not interfere with each other.

• Therefore version management can be thought of as the process of
managing codelines and baselines.

Codelines and Baselines

• A codeline is a sequence of versions of source code with later
versions in the sequence derived from earlier versions.

• Codelines normally apply to components of systems so that there are
different versions of each component.

• A baseline is a definition of a specific system.

• The baseline therefore specifies the component versions that are
included in the system plus a specification of the libraries used,
configuration files, etc.

Codelines and Baselines

A

L1 L2

A1.1

Ex1 Ex2

A1.2 A1.3

Codeline (A)

B B1.1 B1.2 B1.3

Codeline (B)

C C1.1 C1.2 C1.3

Codeline (C)

Libraries and external components

Baseline - V1

A B1.2 C1.1

L1 L2 Ex1

Baseline - V2

A1.3 B1.2 C1.2

L1 L2 Ex2

Mainline

Version Control Systems

• Version control (VC) systems identify, store and control access to the
different versions of components. There are two types of modern
version control system
• Centralized systems, where there is a single master repository that maintains

all versions of the software components that are being developed. Subversion
is a widely used example of a centralized VC system.
• Distributed systems, where multiple versions of the component repository

exist at the same time. Git is a widely-used example of a distributed VC
system.

Key Features of Version Control Systems

• Version and release identification

• Change history recording

• Support for independent development

• Project support

• Storage management

Public Repository and Private Workspaces

• To support independent development without interference, version
control systems use the concept of a project repository and a private
workspace.

• The project repository maintains the ‘master’ version of all
components. It is used to create baselines for system building.

• When modifying components, developers copy (check-out) these
from the repository into their workspace and work on these copies.

• When they have finished their changes, the changed components are
returned (checked-in) to the repository.

Centralized Version Control

• Developers check out components or directories of components from
the project repository into their private workspace and work on these
copies in their private workspace.

• When their changes are complete, they check-in the components
back to the repository.

• If several people are working on a component at the same time, each
check it out from the repository. If a component has been checked
out, the VC system warns other users wanting to check out that
component that it has been checked out by someone else.

Repository Check-in/Check-out

Version management system

Alice Bob

Workspace (Alice) Workspace (Bob)

check_incheck_out

A1.0

A1.1 B1.1

B1.0 C1.0

C1.1 X1.1

X1.0 Y1.0

Y1.1 Q1.0

P1.0

C1.2

Z1.0

R1.0

A1.0

A1.1 B1.1

B1.0 C1.0

C1.1

X1.0

X1.1 Y1.1

Y1.0 C1.0

C1.1

check_incheck_out

Distributed Version Control

• A ‘master’ repository is created on a server that maintains the code
produced by the development team.

• Instead of checking out the files that they need, a developer creates a
clone of the project repository that is downloaded and installed on
their computer.

• Developers work on the files required and maintain the new versions
on their private repository on their own computer.

• When changes are done, they ‘commit’ these changes and update
their private server repository. They may then ‘push’ these changes
to the project repository.

Repository Cloning

Master repository

Alice

Bob

A1.0 B1.0 C1.0 X1.0 Y1.0

Q1.0 P1.0Z1.0 R1.0

Alice’s repository

A1.0 B1.0 C1.0 X1.0 Y1.0

Q1.0 P1.0Z1.0 R1.0

Bob’s repository

A1.0 B1.0 C1.0 X1.0 Y1.0

Q1.0 P1.0Z1.0 R1.0

A1.1 B1.1 C1.1

C1.1 X1.1 Y1.1

clone

clone

Benefits of Distributed Version Control

• It provides a backup mechanism for the repository.
• If the repository is corrupted, work can continue and the project repository

can be restored from local copies.

• It allows for off-line working so that developers can commit changes
if they do not have a network connection.

• Project support is the default way of working.
• Developers can compile and test the entire system on their local machines

and test the changes that they have made.

Open Source Development

• Distributed version control is essential for open source development.
• Several people may be working simultaneously on the same system without

any central coordination.

• As well as a private repository on their own computer, developers
also maintain a public server repository to which they push new
versions of components that they have changed.
• It is then up to the open-source system ‘manager’ to decide when to pull

these changes into the definitive system.

Open Source Development

Alice Bob

Definitive project
repository

Charlie

Alice’s public
repository

Alice’s private
repository

Bob’s’s public
repository

Bob’s private
repository

Charlie’s private
repository

1

22

33

4

Branching and Merging

• Rather than a linear sequence of versions that reflect changes to the
component over time, there may be several independent sequences.
• This is normal in system development, where different developers work

independently on different versions of the source code and so change it in
different ways.

• At some stage, it may be necessary to merge codeline branches to
create a new version of a component that includes all changes that
have been made.
• If the changes made involve different parts of the code, the component

versions may be merged automatically by combining the deltas that apply to
the code.

Branching and Merging

V1.0 V1.1 V1.2

V2.2 V2.3

V2.0

V2.1.1 V2.1.2

V2.1 V2.4

Codeline 1

Codeline 2

<branch>

<branch>

<merge>

Codeline 2.1

Storage Management

• When version control systems were first developed, storage management
was one of their most important functions.
• Disk space was expensive and it was important to minimize the disk space

used by the different copies of components.
• Instead of keeping a complete copy of each version, the system stores a list

of differences (deltas) between one version and another.
• By applying these to a master version (usually the most recent version), a target

version can be recreated.

Version
1.0

Version
1.1

Version
1.2

Version
1.3

D1 D2 D3

Creation dateVersion sequence

Most recent

V1.3 source
code

Storage structure

Storage Management in Git

• As disk storage is now relatively cheap, Git uses an alternative, faster
approach.

• Git does not use deltas but applies a standard compression algorithm
to stored files and their associated meta-information.

• It does not store duplicate copies of files. Retrieving a file simply
involves decompressing it, with no need to apply a chain of
operations.

• Git also uses the notion of packfiles where several smaller files are
combined into an indexed single file.

System Building

System Building

• System building is the process of creating a complete, executable
system by compiling and linking the system components, external
libraries, configuration files, etc.

• System building tools and version management tools must
communicate as the build process involves checking out component
versions from the repository managed by the version management
system.

• The configuration description used to identify a baseline is also used
by the system building tool.

Build Platforms

• The development system, which includes development tools such as
compilers, source code editors, etc.
• Developers check out code from the version management system into a

private workspace before making changes to the system.

• The build server, which is used to build definitive, executable versions
of the system.
• Developers check-in code to the version management system before it is built.

The system build may rely on external libraries that are not included in the
version management system.

• The target environment, which is the platform on which the system
executes.

System Building

Automated
build system

Source
code files

Data files

Libraries

Configuration
files

Executable
tests

Executable
target system

Test resultsCompilers
and tools

Build System Functionality

• Build script generation

• Version management system integration

• Minimal re-compilation

• Executable system creation

• Test automation

• Reporting

• Documentation generation

System Platforms

• The development system, which includes development tools such as
compilers, source code editors, etc.

• The build server, which is used to build definitive, executable versions
of the system. This server maintains the definitive versions of a
system.

• The target environment, which is the platform on which the system
executes.
• For real-time and embedded systems, the target environment is often smaller

and simpler than the development environment (e.g. a cell phone)

Development, Build, and Target Platforms
Development system

Development
tools

Private workspace

Build server
Version

management
system

co

Version management and build server

Target system

Executable system

Target platform

Check-out
(co)

Check-in

Agile Building

• Check out the mainline system from the version management system
into the developer’s private workspace.

• Build the system and run automated tests to ensure that the built
system passes all tests. If not, the build is broken and you should
inform whoever checked in the last baseline system. They are
responsible for repairing the problem.

• Make the changes to the system components.

• Build the system in the private workspace and rerun system tests. If
the tests fail, continue editing.

Agile Building

• Once the system has passed its tests, check it into the build system
but do not commit it as a new system baseline.

• Build the system on the build server and run the tests. You need to do
this in case others have modified components since you checked out
the system. If this is the case, check out the components that have
failed and edit these so that tests pass on your private workspace.

• If the system passes its tests on the build system, then commit the
changes you have made as a new baseline in the system mainline.

Continuous Integration

Check-out
mainline

Build and
test system

Build and
test system

Make
changes

Check-in to
build server

Build and
test system

Commit
changes to VM

Version
management

system

Version
management

system
Build server

Private
workspace

Tests fail

Tests OK

OK

Tests fail

Pros and Cons of Continuous Integration

• Pros
• The advantage of continuous integration is that it allows problems caused by

the interactions between different developers to be discovered and repaired
as soon as possible.
• The most recent system in the mainline is the definitive working system.

• Cons
• If the system is very large, it may take a long time to build and test, especially

if integration with other application systems is involved.
• If the development platform is different from the target platform, it may not

be possible to run system tests in the developer’s private workspace.

Daily Building

• The development organization sets a delivery time (say 2 p.m.) for
system components.
• If developers have new versions of the components that they are writing,

they must deliver them by that time.
• A new version of the system is built from these components by compiling and

linking them to form a complete system.
• This system is then delivered to the testing team, which carries out a set of

predefined system tests
• Faults that are discovered during system testing are documented and

returned to the system developers. They repair these faults in a subsequent
version of the component.

Minimizing Recompilation

• Tools to support system building are usually designed to minimize the
amount of compilation that is required.

• They do this by checking if a compiled version of a component is
available. If so, there is no need to recompile that component.

• A unique signature identifies each source and object code version and
is changed when the source code is edited.

• By comparing the signatures on the source and object code files, it is
possible to decide if the source code was used to generate the object
code component.

File Identification

• Modification timestamps
• The signature on the source code file is the time and date when that file was

modified. If the source code file of a component has been modified after the
related object code file, then the system assumes that recompilation to create
a new object code file is necessary.

• Source code checksums
• The signature on the source code file is a checksum calculated from data in

the file. A checksum function calculates a unique number using the source
text as input. If you change the source code (even by 1 character), this will
generate a different checksum. You can therefore be confident that source
code files with different checksums are actually different.

Linking Source and Object Code

Comp.java
(V1.0)

16583102142014
Timestamp

Comp.java
(V1.1)

Comp.class

17030502142014 16584302142014
Timestamp Timestamp

Compile

Comp.java
(V1.0)

Comp.class

24374509887231 24374509887231
Checksum Checksum

Comp.java
(V1.1)

Comp.class

37650812555734 37650812555734
Checksum Checksum

Compile

Compile

Time-based identification Checksum-based identification

Change Management

Change Management

• Organizational needs and requirements change during the lifetime of
a system, bugs have to be repaired and systems have to adapt to
changes in their environment.

• Change management is intended to ensure that system evolution is a
managed process and that priority is given to the most urgent and
cost-effective changes.

• The change management process is concerned with analyzing the
costs and benefits of proposed changes, approving those changes
that are worthwhile and tracking which components in the system
have been changed.

Change Management Process

Change
requests

Submit
CR

Check CR

Close CR

Implementation
analysis

Cost/impact
analysisAssess CRs

Select CRs Modify
software

Test software

Close CR

Close CRs

ValidInvalid

Pass
Fail

Customer
Customer support

Development

Product development/CCB

Register CR

Partially Completed Change Request Form

Change Management and Agile Methods

• In some agile methods, customers are directly involved in change
management.

• The propose a change to the requirements and work with the team to
assess its impact and decide whether the change should take priority
over the features planned for the next increment of the system.

• Changes to improve the software improvement are decided by the
programmers working on the system.

• Refactoring, where the software is continually improved, is not seen
as an overhead but as a necessary part of the development process.

Release Management

Release Management

• A system release is a version of a software system that is distributed
to customers.

• For mass market software, it is usually possible to identify two types
of release: major releases which deliver significant new functionality,
and minor releases, which repair bugs and fix customer problems
that have been reported.

• For custom software or software product lines, releases of the system
may have to be produced for each customer and individual customers
may be running several different releases of the system at the same
time.

Release Components

• As well as the the executable code of the system, a release may also
include:
• configuration files defining how the release should be configured for

particular installations;
• data files, such as files of error messages, that are needed for successful

system operation;
• an installation program that is used to help install the system on target

hardware;
• electronic and paper documentation describing the system;
• packaging and associated publicity that have been designed for that release.

Factors Influencing System Release Planning

Factor Description

Competition
For mass-market software, a new system release may be necessary because a competing product
has introduced new features and market share may be lost if these are not provided to existing
customers.

Marketing requirements The marketing department of an organization may have made a commitment for releases to be
available at a particular date.

Platform changes You may have to create a new release of a software application when a new version of the
operating system platform is released.

Technical quality of the system

If serious system faults are reported which affect the way in which many customers use the
system, it may be necessary to issue a fault repair release. Minor system faults may be repaired
by issuing patches (usually distributed over the Internet) that can be applied to the current
release of the system.

Release Creation

• The executable code of the programs and all associated data files must be
identified in the version control system.
• Configuration descriptions may have to be written for different hardware

and operating systems.
• Update instructions may have to be written for customers who need to

configure their own systems.
• Scripts for the installation program may have to be written.
• Web pages have to be created describing the release, with links to system

documentation.
• When all information is available, an executable master image of the

software must be prepared and handed over for distribution to customers
or sales outlets.

Release Tracking

• In the event of a problem, it may be necessary to reproduce exactly
the software that has been delivered to a particular customer.

• When a system release is produced, it must be documented to ensure
that it can be re-created exactly in the future.

• This is particularly important for customized, long-lifetime embedded
systems, such as those that control complex machines.
• Customers may use a single release of these systems for many years and may

require specific changes to a particular software system long after its original
release date.

Release Reproduction

• To document a release, you have to record the specific versions of the
source code components that were used to create the executable
code.

• You must keep copies of the source code files, corresponding
executables and all data and configuration files.

• You should also record the versions of the operating system, libraries,
compilers and other tools used to build the software.

Release Planning

• As well as the technical work involved in creating a release
distribution, advertising and publicity material have to be prepared
and marketing strategies put in place to convince customers to buy
the new release of the system.

• Release timing
• If releases are too frequent or require hardware upgrades, customers may not

move to the new release, especially if they have to pay for it.
• If system releases are too infrequent, market share may be lost as customers

move to alternative systems.

Software as a Service

• Delivering software as a service (SaaS) reduces the problems of
release management.

• It simplifies both release management and system installation for
customers.

• The software developer is responsible for replacing the existing
release of a system with a new release and this is made available to
all customers at the same time.

