
SWEN 6301 Software Construction
Module 10: System Dependability and Security

Ahmed Tamrawi

Copyright notice: 1- care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.
2- many slides are adopted with permission from Ian Sommerville and Mustafa Misir ‘s lecture notes on Software Engineering course and Modern Software Development Technology course.

Dependable Systems

Topics Covered

• Dependability properties

• Sociotechnical systems

• Redundancy and diversity

• Dependable processes

• Formal methods and dependability

System Dependability

• For many computer-based systems, the most important system property is the
dependability of the system.

• The dependability of a system reflects the user’s degree of trust in that system. It
reflects the extent of the user’s confidence that it will operate as users expect
and that it will not ‘fail’ in normal use.

• Dependability covers the related systems attributes of reliability, availability and
security. These are all inter-dependent.

Importance of Dependability

• System failures may have widespread effects with large numbers of
people affected by the failure.

• Systems that are not dependable and are unreliable, unsafe or
insecure may be rejected by their users.

• The costs of system failure may be very high if the failure leads to
economic losses or physical damage.

• Undependable systems may cause information loss with a high
consequent recovery cost.

Causes of Failure

• Hardware failure
• Hardware fails because of design and manufacturing errors or because

components have reached the end of their natural life.

• Software failure
• Software fails due to errors in its specification, design or implementation.

• Operational failure
• Human operators make mistakes. Now perhaps the largest single cause of

system failures in socio-technical systems.

Dependability Properties

Principal Dependability Properties

Dependability

Availability Reliability SecuritySafety Resilience

The ability of the system
to protect itself against
deliberate or accidental

intrusion

The ability of the system
to resist and recover

from damaging events

The ability of the system
to operate without
catastrophic failure

The ability of the system
to deliver services as

specified

The ability of the system
to deliver services when

requested

Dependability

Availability Reliability SecuritySafety Resilience

The ability of the system
to protect itself against
deliberate or accidental

intrusion

The ability of the system
to resist and recover

from damaging events

The ability of the system
to operate without
catastrophic failure

The ability of the system
to deliver services as

specified

The ability of the system
to deliver services when

requested

Repairability

The extent to which the
system can be repaired in

the event of a failure

Dependability

Availability Reliability SecuritySafety Resilience

The ability of the system
to protect itself against
deliberate or accidental

intrusion

The ability of the system
to resist and recover

from damaging events

The ability of the system
to operate without
catastrophic failure

The ability of the system
to deliver services as

specified

The ability of the system
to deliver services when

requested

Maintainability

The extent to which the
system can be adapted to

new requirements

Dependability

Availability Reliability SecuritySafety Resilience

The ability of the system
to protect itself against
deliberate or accidental

intrusion

The ability of the system
to resist and recover

from damaging events

The ability of the system
to operate without
catastrophic failure

The ability of the system
to deliver services as

specified

The ability of the system
to deliver services when

requested

Error Tolerance

The extent to which user
input errors can be

avoided and tolerated

Dependability Attribute Dependencies

• Safe system operation depends on the system being available and
operating reliably.

• A system may be unreliable because its data has been corrupted by
an external attack.

• Denial of service attacks on a system are intended to make it
unavailable.

• If a system is infected with a virus, you cannot be confident in its
reliability or safety.

Dependability Achievement

• Avoid the introduction of accidental errors when developing the system.
• Design V & V processes that are effective in discovering residual errors in

the system.
• Design systems to be fault tolerant so that they can continue in operation

when faults occur
• Design protection mechanisms that guard against external attacks.
• Configure the system correctly for its operating environment.
• Include system capabilities to recognize and resist cyberattacks.
• Include recovery mechanisms to help restore normal system service after a

failure.

Dependability Costs

• Dependability costs tend to increase
exponentially as increasing levels of
dependability are required.

• There are two reasons for this:
• The use of more expensive development

techniques and hardware that are required to
achieve the higher levels of dependability.

• The increased testing and system validation that is
required to convince the system client and
regulators that the required levels of dependability
have been achieved.

Co
st

Low Medium High Very
high

Ultra-
high

Dependability

Dependability Economics

• Because of very high costs of dependability achievement, it may be
more cost effective to accept untrustworthy systems and pay for
failure costs

• However, this depends on social and political factors. A reputation for
products that can’t be trusted may lose future business

• Depends on system type - for business systems in particular, modest
levels of dependability may be adequate

Sociotechnical Systems

Systems and Software

• Software engineering is not an isolated activity but is part of a
broader systems engineering process.

• Software systems are therefore not isolated systems but are essential
components of broader systems that have a human, social or
organizational purpose.

• Example
• The wilderness weather system is part of broader weather recording and

forecasting systems
• These include hardware and software, forecasting processes, system users,

the organizations that depend on weather forecasts, etc.

Sociotechnical Systems Stack

Equipment

Operating system

Communications and data management

Application system

Business processes

Organization

Society

Systems
engineering

Software
engineering

Hardware devices, some of which may be computers. Most
devices will include an embedded system of some kind.

Provides a set of common facilities for higher levels in the system

Middleware that provides access to remote systems and databases

Specific functionality to meet some organization requirements.

A set of processes involving people and computer
systems that support the activities of the business

Higher level strategic business activities
that affect the operation of the system

Laws, regulation and culture that
affect the operation of the system

Holistic System Design

• There are interactions and dependencies between the layers in a
system and changes at one level ripple through the other levels

• Example: Change in regulations (society) leads to changes in business
processes and application software.

• For dependability, a systems perspective is essential
• Contain software failures within the enclosing layers of the STS stack.
• Understand how faults and failures in adjacent layers may affect the software

in a system.

Regulation and Compliance

• The general model of economic organization that is now almost
universal in the world is that privately owned companies offer goods
and services and make a profit on these.

• To ensure the safety of their citizens, most governments regulate
(limit the freedom of) privately owned companies so that they must
follow certain standards to ensure that their products are safe and
secure.

Regulated Systems

• Many critical systems are regulated systems, which means that their
use must be approved by an external regulator before the systems
go into service.

• Nuclear systems
• Air traffic control systems
• Medical devices

• A safety and dependability case has to be approved by the regulator.
Therefore, critical systems development has to create the evidence to
convince a regulator that the system is dependable, safe and secure.

Safety Regulation

• Regulation and compliance (following the rules) applies to the
sociotechnical system as a whole and not simply the software
element of that system.

• Safety-related systems may have to be certified as safe by the
regulator.

• To achieve certification, companies that are developing safety-critical
systems have to produce an extensive safety case that shows that
rules and regulations have been followed.

• It can be as expensive develop the documentation for certification
as it is to develop the system itself.

Redundancy and Diversity

Redundancy and Diversity

• Redundancy: Keep more than a single version of critical components so that if one fails then a
backup is available.

• Diversity: Provide the same functionality in different ways in different components so that they
will not fail in the same way.

• Redundant and diverse components should be independent so that they will not
suffer from ‘common-mode’ failures

• For example, components implemented in different programming languages means that a
compiler fault will not affect all of them.

Diversity and Redundancy examples

• Redundancy. Where availability is critical (e.g. in e-commerce
systems), companies normally keep backup servers and switch to
these automatically if failure occurs.

• Diversity. To provide resilience against external attacks, different
servers may be implemented using different operating systems (e.g.
Windows and Linux)

Process Diversity and Redundancy

• Process activities, such as validation, should not depend on a single
approach, such as testing, to validate the system.

• Redundant and diverse process activities are important especially for
verification and validation.

• Multiple, different process activities the complement each other and
allow for cross-checking help to avoid process errors, which may lead
to errors in the software.

Problems with Redundancy and Diversity

• Adding diversity and redundancy to a system increases the system
complexity.

• This can increase the chances of error because of unanticipated
interactions and dependencies between the redundant system
components.

• Some engineers therefore advocate simplicity and extensive V & V as
a more effective route to software dependability.

• Airbus FCS architecture is redundant/diverse; Boeing 777 FCS
architecture has no software diversity

Dependable Processes

Dependable Processes

• To ensure a minimal number of software faults, it is important to have
a well-defined, repeatable software process.

• A well-defined repeatable process is one that does not depend
entirely on individual skills; rather can be enacted by different people.

• Regulators use information about the process to check if good
software engineering practice has been used.

• For fault detection, it is clear that the process activities should include
significant effort devoted to verification and validation.

Dependable Process Characteristics

• Explicitly defined
• A process that has a defined process model that is used to drive the software

production process. Data must be collected during the process that proves
that the development team has followed the process as defined in the
process model.

• Repeatable
• A process that does not rely on individual interpretation and judgment. The

process can be repeated across projects and with different team members,
irrespective of who is involved in the development.

Attributes of Dependable Processes
Process

Characteristic Description

Auditable
The process should be understandable by people apart from process participants, who can
check that process standards are being followed and make suggestions for process
improvement.

Diverse The process should include redundant and diverse verification and validation activities.

Documentable The process should have a defined process model that sets out the activities in the process
and the documentation that is to be produced during these activities.

Robust The process should be able to recover from failures of individual process activities.

Standardized A comprehensive set of software development standards covering software production and
documentation should be available.

Dependable Process Activities

• Requirements reviews to check that the requirements are, as far as
possible, complete and consistent.

• Requirements management to ensure that changes to the
requirements are controlled and that the impact of proposed
requirements changes is understood.

• Formal specification, where a mathematical model of the software is
created and analyzed.

• System modeling, where the software design is explicitly documented
as a set of graphical models, and the links between the requirements
and these models are documented.

Dependable Process Activities

• Design and program inspections, where the different descriptions of
the system are inspected and checked by different people.

• Static analysis, where automated checks are carried out on the source
code of the program.

• Test planning and management, where a comprehensive set of
system tests is designed.

• The testing process has to be carefully managed to demonstrate that these
tests provide coverage of the system requirements and have been correctly
applied in the testing process.

Dependable Processes and Agility

• Dependable software often requires certification so both process and
product documentation has to be produced.

• Up-front requirements analysis is also essential to discover
requirements and requirements conflicts that may compromise the
safety and security of the system.

• These conflict with the general approach in agile development of co-
development of the requirements and the system and minimizing
documentation.

Dependable Processes and Agility

• An agile process may be defined that incorporates techniques such as
iterative development, test-first development and user involvement
in the development team.

• So long as the team follows that process and documents their actions,
agile methods can be used.

• However, additional documentation and planning is essential so ‘pure
agile’ is impractical for dependable systems engineering.

Formal Methods and Dependability

Formal Specification

• Formal methods are approaches to software development that are based on
mathematical representation and analysis of software.

• Formal methods include
• Formal specification;
• Specification analysis and proof;
• Transformational development;
• Program verification.

• Formal methods significantly reduce some types of programming errors and can
be cost-effective for dependable systems engineering.

Formal Approaches

• Verification-based approaches
• Different representations of a software system such as a specification and a

program implementing that specification are proved to be equivalent.
• This demonstrates the absence of implementation errors.

• Refinement-based approaches
• A representation of a system is systematically transformed into another,

lower-level representation e.g. a specification is transformed automatically
into an implementation.

• This means that, if the transformation is correct, the representations are
equivalent.

Use of Formal Methods

• The principal benefits of formal methods are in reducing the number
of faults in systems.

• Consequently, their main area of applicability is in dependable
systems engineering. There have been several successful projects
where formal methods have been used in this area.

• In this area, the use of formal methods is most likely to be cost-
effective because high system failure costs must be avoided.

Classes of Error

• Specification and design errors and omissions.
• Developing and analysing a formal model of the software may reveal errors

and omissions in the software requirements. If the model is generated
automatically or systematically from source code, analysis using model
checking can find undesirable states that may occur such as deadlock in a
concurrent system.

• Inconsistences between a specification and a program.
• If a refinement method is used, mistakes made by developers that make the

software inconsistent with the specification are avoided. Program proving
discovers inconsistencies between a program and its specification.

Benefits of Formal Specification

• Developing a formal specification requires the system requirements to be analyzed in
detail. This helps to detect problems, inconsistencies and incompleteness in the
requirements.

• As the specification is expressed in a formal language, it can be automatically analyzed to
discover inconsistencies and incompleteness.

• If you use a formal method such as the B method, you can transform the formal
specification into a ‘correct’ program.

• Program testing costs may be reduced if the program is formally verified against its
specification.

Acceptance of Formal Methods

• Formal methods have had limited impact on practical software development:
• Problem owners cannot understand a formal specification and so cannot assess if it is an

accurate representation of their requirements.
• It is easy to assess the costs of developing a formal specification but harder to assess the

benefits. Managers may therefore be unwilling to invest in formal methods.
• Software engineers are unfamiliar with this approach and are therefore reluctant to propose

the use of formal methods.
• Formal methods are still hard to scale up to large systems.
• Formal specification is not really compatible with agile development methods.

Security Engineering

Topics Covered

• Security and dependability

• Security and organizations

• Security requirements

• Secure systems design

• Security testing and assurance

• Tools, techniques and methods to support the development and
maintenance of systems that can resist malicious attacks that are
intended to damage a computer-based system or its data.

• A sub-field of the broader field of computer security.

Security Engineering

Security Dimensions

• Confidentiality
• Information in a system may be disclosed or made accessible to people or

programs that are not authorized to have access to that information.

• Integrity
• Information in a system may be damaged or corrupted making it unusual or

unreliable.

• Availability
• Access to a system or its data that is normally available may not be possible.

Security Levels

• Infrastructure security, which is concerned with maintaining the
security of all systems and networks that provide an infrastructure
and a set of shared services to the organization.

• Application security, which is concerned with the security of
individual application systems or related groups of systems.

• Operational security, which is concerned with the secure operation
and use of the organization’s systems.

System Layers where Security may be
Compromised

Operating System

Generic, shared applications (browsers, e--mail, etc)

Database management

Middleware

Reusable components and libraries

Application

Network Computer hardware

Application/Infrastructure Security

• Application security is a software engineering problem where the
system is designed to resist attacks.

• Infrastructure security is a systems management problem where the
infrastructure is configured to resist attacks.

• The focus of this chapter is application security rather than
infrastructure security.

System Security Management

• User and permission management
• Adding and removing users from the system and setting up appropriate

permissions for users

• Software deployment and maintenance
• Installing application software and middleware and configuring these systems

so that vulnerabilities are avoided.

• Attack monitoring, detection and recovery
• Monitoring the system for unauthorized access, design strategies for resisting

attacks and develop backup and recovery strategies.

Operational Security

• Primarily a human and social issue

• Concerned with ensuring the people do not take actions that may
compromise system security

• E.g. Tell others passwords, leave computers logged on

• Users sometimes take insecure actions to make it easier for them to
do their jobs

• There is therefore a trade-off between system security and system
effectiveness.

Security and Dependability

Security

• The security of a system is a system property that reflects the
system’s ability to protect itself from accidental or deliberate external
attack.

• Security is essential as most systems are networked so that external
access to the system through the Internet is possible.

• Security is an essential pre-requisite for availability, reliability and
safety.

Fundamental Security

• If a system is a networked system and is insecure then statements
about its reliability and its safety are unreliable.

• These statements depend on the executing system and the developed
system being the same. However, intrusion can change the executing
system and/or its data.

• Therefore, the reliability and safety assurance is no longer valid.

Security Terminology

Term Definition

Asset Something of value which has to be protected. The asset may be the software system itself or data
used by that system.

Attack An exploitation of a system’s vulnerability. Generally, this is from outside the system and is a deliberate
attempt to cause some damage.

Control A protective measure that reduces a system’s vulnerability. Encryption is an example of a control that
reduces a vulnerability of a weak access control system

Exposure Possible loss or harm to a computing system. This can be loss or damage to data, or can be a loss of
time and effort if recovery is necessary after a security breach.

Threat Circumstances that have potential to cause loss or harm. You can think of these as a system
vulnerability that is subjected to an attack.

Vulnerability A weakness in a computer-based system that may be exploited to cause loss or harm.

Examples of Security Terminology (Mentcare)

Term Example
Asset The records of each patient that is receiving or has received treatment.

Exposure
Potential financial loss from future patients who do not seek treatment because they do not trust
the clinic to maintain their data. Financial loss from legal action by the sports star. Loss of
reputation.

Vulnerability A weak password system which makes it easy for users to set guessable passwords. User ids that are
the same as names.

Attack An impersonation of an authorized user.

Threat An unauthorized user will gain access to the system by guessing the credentials (login name and
password) of an authorized user.

Control A password checking system that disallows user passwords that are proper names or words that are
normally included in a dictionary.

Threat Types

• Interception threats that allow an attacker to gain access to an asset.
• A possible threat to the Mentcare system might be a situation where an attacker gains access

to the records of an individual patient.

• Interruption threats that allow an attacker to make part of the system
unavailable.

• A possible threat might be a denial of service attack on a system database server so that
database connections become impossible.

• Modification threats that allow an attacker to tamper with a system asset.
• In the Mentcare system, a modification threat would be where an attacker alters or destroys

a patient record.

• Fabrication threats that allow an attacker to insert false information into a
system.

• This is perhaps not a credible threat in the Mentcare system but would be a threat in a
banking system, where false transactions might be added to the system that transfer money
to the perpetrator’s bank account.

Security Assurance

• Vulnerability avoidance
• The system is designed so that vulnerabilities do not occur.
• For example, if there is no external network connection then external attack is impossible

• Attack detection and elimination
• The system is designed so that attacks on vulnerabilities are detected and neutralised before

they result in an exposure.
• For example, virus checkers find and remove viruses before they infect a system

• Exposure limitation and recovery
• The system is designed so that the adverse consequences of a successful attack are

minimised.
• For example, a backup policy allows damaged information to be restored

Security and Dependability

• Security and reliability
• If a system is attacked and the system or its data are corrupted as a

consequence of that attack, then this may induce system failures that
compromise the reliability of the system.

• Security and availability
• A common attack on a web-based system is a denial of service attack, where a

web server is flooded with service requests from a range of different sources.
The aim of this attack is to make the system unavailable.

Security and Dependability

• Security and safety
• An attack that corrupts the system or its data means that assumptions about

safety may not hold. Safety checks rely on analysing the source code of safety
critical software and assume the executing code is a completely accurate
translation of that source code. If this is not the case, safety-related failures
may be induced and the safety case made for the software is invalid.

• Security and resilience
• Resilience is a system characteristic that reflects its ability to resist and

recover from damaging events. The most probable damaging event on
networked software systems is a cyberattack of some kind so most of the
work now done in resilience is aimed at deterring, detecting and recovering
from such attacks.

Security and Organizations

Security is a Business Issue

• Security is expensive and it is important that security decisions are
made in a cost-effective way

• There is no point in spending more than the value of an asset to keep that
asset secure.

• Organizations use a risk-based approach to support security decision
making and should have a defined security policy based on security
risk analysis

• Security risk analysis is a business rather than a technical process

Organizational Security Policies

• Security policies should set out general information access strategies
that should apply across the organization.

• The point of security policies is to inform everyone in an organization
about security so these should not be long and detailed technical
documents.

• From a security engineering perspective, the security policy defines,
in broad terms, the security goals of the organization.

• The security engineering process is concerned with implementing
these goals.

Security Policies

• The assets that must be protected
• It is not cost-effective to apply stringent security procedures to all

organizational assets. Many assets are not confidential and can be made
freely available.

• The level of protection that is required for different types of asset
• For sensitive personal information, a high level of security is required; for

other information, the consequences of loss may be minor so a lower level of
security is adequate.

Security Policies

• The responsibilities of individual users, managers and the
organization

• The security policy should set out what is expected of users e.g. strong
passwords, log out of computers, office security, etc.

• Existing security procedures and technologies that should be
maintained

• For reasons of practicality and cost, it may be essential to continue to use
existing approaches to security even where these have known limitations.

Security Risk Assessment and Management

• Risk assessment and management is concerned with assessing the possible losses
that might ensue from attacks on the system and balancing these losses against
the costs of security procedures that may reduce these losses.

• Risk management should be driven by an organizational security policy.

• Risk management involves
• Preliminary risk assessment
• Life cycle risk assessment
• Operational risk assessment

Preliminary Risk Assessment

• The aim of this initial risk assessment is to identify generic risks that
are applicable to the system and to decide if an adequate level of
security can be achieved at a reasonable cost.

• The risk assessment should focus on the identification and analysis of
high-level risks to the system.

• The outcomes of the risk assessment process are used to help identify
security requirements.

Design Risk Assessment

• This risk assessment takes place during the system development life
cycle and is informed by the technical system design and
implementation decisions.

• The results of the assessment may lead to changes to the security
requirements and the addition of new requirements.

• Known and potential vulnerabilities are identified, and this knowledge
is used to inform decision making about the system functionality and
how it is to be implemented, tested, and deployed.

Operational Risk Assessment

• This risk assessment process focuses on the use of the system and the
possible risks that can arise from human behavior.

• Operational risk assessment should continue after a system has been
installed to take account of how the system is used.

• Organizational changes may mean that the system is used in different
ways from those originally planned. These changes lead to new
security requirements that have to be implemented as the system
evolves.

Security Requirements

Security Specification

• Security specification has something in common with safety requirements specification – in both
cases, your concern is to avoid something bad happening.

• Four major differences
• Safety problems are accidental – the software is not operating in a hostile environment. In security, you

must assume that attackers have knowledge of system weaknesses
• When safety failures occur, you can look for the root cause or weakness that led to the failure. When

failure results from a deliberate attack, the attacker may conceal the cause of the failure.
• Shutting down a system can avoid a safety-related failure. Causing a shut down may be the aim of an

attack.
• Safety-related events are not generated from an intelligent adversary. An attacker can probe defenses

over time to discover weaknesses.

Types of Security Requirement

• Identification requirements.
• Authentication requirements.

• Authorisation requirements.
• Immunity requirements.

• Integrity requirements.
• Intrusion detection requirements.

• Non-repudiation requirements.
• Privacy requirements.

• Security auditing requirements.
• System maintenance security requirements.

Security Requirement Classification

• Risk avoidance requirements set out the risks that should be avoided
by designing the system so that these risks simply cannot arise.

• Risk detection requirements define mechanisms that identify the risk
if it arises and neutralise the risk before losses occur.

• Risk mitigation requirements set out how the system should be
designed so that it can recover from and restore system assets after
some loss has occurred.

Preliminary Risk Assessment Process for
Security Requirements

Asset
identification

Asset value
assessment

Threat
identification

Attack
assessment

Exposure
assessment

Security req.
definition

Control
identification

Feasibility
assessment

Identify the key system
assets (or services) that

have to be protected Estimate the value of the
identified assets

Assess the potential losses
associated with each asset

Assess the technical feasibility
and cost of the controls

Define system security requirements.
These can be infrastructure or

application system requirements

Propose the controls that
may be put in place to

protect an asset

Identify the most probable
threats to the system assets

Decompose threats into possible
attacks on the system and the ways

that these may occur

Assessment Report for the Mentcare System

Asset Value Exposure

The information system High. Required to support all clinical
consultations. Potentially safety-critical.

High. Financial loss as clinics may have to
be canceled. Costs of restoring system.
Possible patient harm if treatment cannot
be prescribed.

The patient database High. Required to support all clinical
consultations. Potentially safety-critical.

High. Financial loss as clinics may have to
be canceled. Costs of restoring system.
Possible patient harm if treatment cannot
be prescribed.

An individual patient record Normally low although may be high for
specific high-profile patients.

Low direct losses but possible loss of
reputation.

Threat and Control Analysis in a Preliminary
Risk Assessment Report

Threat Probability Control Feasibility

An unauthorized user
gains access as system
manager and makes
system unavailable

Low Only allow system management
from specific locations that are
physically secure.

Low cost of implementation
but care must be taken with
key distribution and to ensure
that keys are available in the
event of an emergency.

An unauthorized user
gains access as system
user and accesses
confidential information

High Require all users to authenticate
themselves using a biometric
mechanism.

Log all changes to patient
information to track system usage.

Technically feasible but high-
cost solution. Possible user
resistance.

Simple and transparent to
implement and also supports
recovery.

Security Requirements for the Mentcare
System
• Patient information shall be downloaded at the start of a clinic

session to a secure area on the system client that is used by clinical
staff.

• All patient information on the system client shall be encrypted.

• Patient information shall be uploaded to the database after a clinic
session has finished and deleted from the client computer.

• A log on a separate computer from the database server must be
maintained of all changes made to the system database.

Misuse Cases

• Misuse cases are instances of threats to a system

• Interception threats
• Attacker gains access to an asset

• Interruption threats
• Attacker makes part of a system unavailable

• Modification threats
• A system asset if tampered with

• Fabrication threats
• False information is added to a system

Misuse Cases

Medical
receptionist

Register
patient

Transfer data

Contact
patient

View patient
info.

Unregister
patient

Impersonate
receptionist

Intercept
transfer

Attacker

Secure Systems Design

Secure Systems Design

• Security should be designed into a system – it is very difficult to make
an insecure system secure after it has been designed or implemented

• Architectural design
• how do architectural design decisions affect the security of a system?

• Good practice
• what is accepted good practice when designing secure systems?

Design Compromises

• Adding security features to a system to enhance its security affects
other attributes of the system

• Performance
• Additional security checks slow down a system so its response time or

throughput may be affected

• Usability
• Security measures may require users to remember information or require

additional interactions to complete a transaction. This makes the system less
usable and can frustrate system users.

Design Risk Assessment

• Risk assessment while the system is being developed and after it has
been deployed

• More information is available - system platform, middleware and the
system architecture and data organisation.

• Vulnerabilities that arise from design choices may therefore be
identified.

Design and Risk Assessment

Design risk
assessment

System
design

Technology
choices

Design assets Design and
requirements

changes

Architectural
design

System
requirements

Protection Requirements

• Protection requirements may be generated when knowledge of
information representation and system distribution

• Separating patient and treatment information limits the amount of
information (personal patient data) that needs to be protected

• Maintaining copies of records on a local client protects against denial
of service attacks on the server

• But these may need to be encrypted

Design Risk Assessment
Design assets

Asset value
assessment

Threat
identification

Attack
assessment

Exposure
assessment

Control
identification

Technology and
 architecture choices

Available
controls

Design and
requirements

changes

Design Decisions from use of COTS

• System users authenticated using a name/password combination.

• The system architecture is client-server with clients accessing the
system through a standard web browser.

• Information is presented as an editable web form.

Vulnerabilities Associated with Technology
Choices

Login/password
authentication

Users set
guessable
passwords

Authorized users reveal
their passwords to
unauthorised users

Technology choice Vulnerabilities

Client/server
architecture using

web browser

Server subject to
denial of service

attack

Confidential information
may be left in browser

cache

Browser security
loopholes lead to

unauthorized access

Use of editable
web forms

Fine-grain logging
of changes is
impossible

Authorization can’t be
varied according to user’s

role

Security Requirements

• A password checker shall be made available and shall be run daily.
Weak passwords shall be reported to system administrators.

• Access to the system shall only be allowed by approved client
computers.

• All client computers shall have a single, approved web browser
installed by system administrators.

Architectural Design

• Two fundamental issues have to be considered when designing an
architecture for security.

• Protection
• How should the system be organized so that critical assets can be protected against

external attack?
• Distribution

• How should system assets be distributed so that the effects of a successful attack are
minimized?

• These are potentially conflicting
• If assets are distributed, then they are more expensive to protect. If assets are

protected, then usability and performance requirements may be
compromised.

Protection

• Platform-level protection
• Top-level controls on the platform on which a system runs.

• Application-level protection
• Specific protection mechanisms built into the application itself e.g. additional

password protection.

• Record-level protection
• Protection that is invoked when access to specific information is requested

• These lead to a layered protection architecture

Layered Protection Architecture
Platform level protection

Application level protection

Record level protection

Patient records

System
authentication

System
authorization

File integrity
management

Database
login

Database
authorization

Transaction
management

Database
recovery

Record access
authorization

Record
encryption

Record integrity
management

Distribution

• Distributing assets means that attacks on one system do not
necessarily lead to complete loss of system service

• Each platform has separate protection features and may be different
from other platforms so that they do not share a common
vulnerability

• Distribution is particularly important if the risk of denial of service
attacks is high

US equity dataUS trading
history

International
equity prices

US funds data

US user accounts International
user accounts

New York trading system

Authentication and authorization

UK equity dataUK trading
history

International
equity prices

UK funds data

UK user accounts International
user accounts

London trading system

Authentication and authorization

Euro. equity dataEuro. trading
history

International
equity prices

Euro. funds data

European user
accounts

International
user accounts

Frankfurt trading system

Authentication and authorization

Asian equity dataHK trading
history

International
equity prices

Asian funds data

HK user accounts International
user accounts

Hong Kong trading system

Authentication and authorization

Distributed Assets in an Equity Trading System

Design Guidelines for Security Engineering

• Design guidelines encapsulate good practice in secure systems design

• Design guidelines serve two purposes:
• They raise awareness of security issues in a software engineering team.

Security is considered when design decisions are made.
• They can be used as the basis of a review checklist that is applied during the

system validation process.

• Design guidelines here are applicable during software specification
and design

Design Guidelines 1-3

• Base decisions on an explicit security policy
• Define a security policy for the organization that sets out the fundamental

security requirements that should apply to all organizational systems.

• Avoid a single point of failure
• Ensure that a security failure can only result when there is more than one

failure in security procedures. For example, have password and question-
based authentication.

• Fail securely
• When systems fail, for whatever reason, ensure that sensitive information

cannot be accessed by unauthorized users even although normal security
procedures are unavailable.

Design Guidelines 4-6

• Balance security and usability
• Try to avoid security procedures that make the system difficult to use.

Sometimes you have to accept weaker security to make the system more
usable.

• Log user actions
• Maintain a log of user actions that can be analyzed to discover who did what.

If users know about such a log, they are less likely to behave in an
irresponsible way.

• Use redundancy and diversity to reduce risk
• Keep multiple copies of data and use diverse infrastructure so that an

infrastructure vulnerability cannot be the single point of failure.

Design Guidelines 7-10

• Specify the format of all system inputs
• If input formats are known then you can check that all inputs are within range

so that unexpected inputs don’t cause problems.

• Compartmentalize your assets
• Organize the system so that assets are in separate areas and users only have

access to the information that they need rather than all system information.

• Design for deployment
• Design the system to avoid deployment problems

• Design for recoverability
• Design the system to simplify recoverability after a successful attack.

Aspects of Secure Systems Programming

• Vulnerabilities are often language-specific.
• Array bound checking is automatic in languages like Java so this is not a

vulnerability that can be exploited in Java programs.
• However, millions of programs are written in C and C++ as these allow for the

development of more efficient software so simply avoiding the use of these
languages is not a realistic option.

• Security vulnerabilities are closely related to program reliability.
• Programs without array bound checking can crash so actions taken to improve

program reliability can also improve system security.

Dependable Programming Guidelines

Dependable programming guidelines

1. Limit the visibility of information in a program
2. Check all inputs for validity
3. Provide a handler for all exceptions
4. Minimize the use of error-prone constructs
5. Provide restart capabilities
6. Check array bounds
7. Include timeouts when calling external components
8. Name all constants that represent real-world values

Security Testing and Assurance

Security Testing

• Testing the extent to which the system can protect itself from external attacks.
• Problems with security testing:

• Security requirements are ‘shall not’ requirements i.e. they specify what
should not happen. It is not usually possible to define security requirements
as simple constraints that can be checked by the system.

• The people attacking a system are intelligent and look for vulnerabilities. They
can experiment to discover weaknesses and loopholes in the system.

Security Validation

• Experience-based testing
• The system is reviewed and analysed against the types of attack that are known to the

validation team.

• Penetration testing
• A team is established whose goal is to breach the security of the system by simulating attacks

on the system.

• Tool-based analysis
• Various security tools such as password checkers are used to analyse the system in operation.

• Formal verification
• The system is verified against a formal security specification.

Examples of Entries in a Security Checklist
Security checklist
1. Do all files that are created in the application have appropriate access permissions?
The wrong access permissions may lead to these files being accessed by unauthorized
users.
2. Does the system automatically terminate user sessions after a period of inactivity?
Sessions that are left active may allow unauthorized access through an unattended
computer.
3. If the system is written in a programming language without array bound checking, are
there situations where buffer overflow may be exploited? Buffer overflow may allow
attackers to send code strings to the system and then execute them.
4. If passwords are set, does the system check that passwords are ‘strong’? Strong
passwords consist of mixed letters, numbers, and punctuation, and are not normal
dictionary entries. They are more difficult to break than simple passwords.
5. Are inputs from the system’s environment always checked against an input
specification? Incorrect processing of badly formed inputs is a common cause of
security vulnerabilities.

